A model for theoretical analysis of nonlinear (or high gain) mode of photoconductive semiconductor switches (PCSS's) is proposed.The switching transition of high gain PCSS's can be described with an optically...A model for theoretical analysis of nonlinear (or high gain) mode of photoconductive semiconductor switches (PCSS's) is proposed.The switching transition of high gain PCSS's can be described with an optically activated charge domain. The switching characteristics including rise time,delay and their relationship to electric field strength,optical trigger energies are discussed.The formation and radiation transit,accumulation of the charge domain are related with the triggering and sustaining phases of PCSS's,respectively.The results of the mathematical model on this mechanism agree with experimental results.展开更多
We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion...We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.展开更多
GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin ...GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin gain,acoustic mode number and peak intensity difference.When an optical fiber is used in optical fiber sensing or communication system,its BGS characteristics may play an important role in determining the performance of the system.In this paper,finite element analysis(FEA)method is used to study the influence of refractive index distribution and its corresponding AVP on the BGS in step-index,graded-index,and complex-index optical fibers.A new method has also been proposed to efficiently discriminate acoustic mode solution and obtain the new and full images of total Brillouin gain and acoustic modes number of the fiber as a function of the refractive index distribution,considering the influence of changing the refractive index difference and the geometric size simultaneously.For each type of optical fiber,the recommended parameter range is provided for optical fiber sensing and optical fiber communication.Moreover,the suitable optical fiber with close peak intensity in its multi-peak BGS is explored and achieved,which can be used in Brillouin beat spectrum detection systems to improve sensing accuracy.展开更多
The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,th...The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,there are a few different points.An SOA in front of the tunable laser should be polarization dependent and has low optical confinement factor.To obtain wide gain bandwidth at the threshold current,the gain chip used in the tunable laser cavity should be something between SOA and fixed-wavelength laser design,while the fixed-wavelength laser has high optical confinement factor.Detailed discussion is given with basic equations and some simulation results on saturation power of the SOA and gain bandwidth of gain chip are shown.展开更多
Band structure, electron distribution, direct-bandgap light emission, and optical gain of tensile strained, n-doped Ge at different temperatures were calculated. We found that the heating effects not only increase the...Band structure, electron distribution, direct-bandgap light emission, and optical gain of tensile strained, n-doped Ge at different temperatures were calculated. We found that the heating effects not only increase the electron occupancy rate in the Γ valley of Ge by thermal excitation, but also reduce the energy difference between its Γ valley and L valley. However,the light emission enhancement of Ge induced by the heating effects is weakened with increasing tensile strain and n-doping concentration. This phenomenon could be explained by that Ge is more similar to a direct bandgap material under tensile strain and n-doping. The heating effects also increase the optical gain of tensile strained, n-doped Ge at low temperature, but decrease it at high temperature. At high temperature, the hole and electron distributions become more flat, which prevent obtaining higher optical gain. Meanwhile, the heating effects also increase the free-carrier absorption. Therefore, to obtain a higher net maximum gain, the tensile strained, n-doped Ge films on Si should balance the gain increased by the heating effects and the optical loss induced by the free-carrier absorption.展开更多
The steady-state gain distribution in cladding pumped thulium-doped fiber laser(TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With ...The steady-state gain distribution in cladding pumped thulium-doped fiber laser(TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With the gain curve, a problem, which is named optical feedback inhibition(OFI) and always occurs in tandem TDFL-Ho:YAG laser system, is analyzed quantitatively. The actual characteristics of output spectra and power basically prove the conclusion of theoretical analysis. Then a simple mirror-deflected L-shaped cavity is employed to restrain the external feedback and simplify the structure of fiber-bulk Ho:YAG laser. Finally, 25 W of 2097-nm laser power and 51.2% of optical-to-optical conversion efficiency are obtained, and the beam quality factor is less than 1.43 obtained by knife-edge method.展开更多
Using transmission electron microscopy (TEM) and x-ray diffraction analysis, we have studied the structural and morphological evolution of highly Er/Yb co-doped A1203 films in the temperature range from 600℃-900℃....Using transmission electron microscopy (TEM) and x-ray diffraction analysis, we have studied the structural and morphological evolution of highly Er/Yb co-doped A1203 films in the temperature range from 600℃-900℃. By comparison with TEM observation, the annealing behaviours of photoluminescence (PL) emission and optical loss were found to have relation to the structure and morphology. The increase of PL intensity and optical loss above 800℃ might result from the crystallization of amorphous Al2O3 films. Based on the study on the structure and morphology, a rate equation propagation model of a multilevel system was used to calculate the optical gains of Er-doped Al2O3 planar waveguide amplifiers involving the variation of PL efficiency and optical loss with annealing temperature. It was found that the amplifiers had an optimized optical gain at the temperature corresponding to the minimum of optical loss, rather than at the temperature corresponding to the maximum of PL efficiency, suggesting that the optical loss is a key factor for determining the optical gain of an Er-doped Al2O3 planar waveguide amplifier.展开更多
Inducing a significant optical torque remains a challenging task,since the law of angular momentum conservation implies that one has to harvest a lot of light.Such a problem was partially resolved by using optical twi...Inducing a significant optical torque remains a challenging task,since the law of angular momentum conservation implies that one has to harvest a lot of light.Such a problem was partially resolved by using optical twist via strong internal multiple scattering to recycle the photons,and one can induce a large torque per unit of radiation cross section.By using the Maxwell stress tensor and the generalized Lorentz-Mie scattering theory for multi-spheres,we investigate the influence of gain materials in further amplifying optical torque in the optical twist settings.It is found that,when combined with a gain layer,the optical torque of lossy(both in PT-and non-PT-symmetric structures)or lossless(low dielectric materials)clusters at resonance could be one order of magnitude larger than those of a single layer and previous studied plasmonic double layer structures.Moreover,the gain-enhanced large opposite rotations(i.e.,optical twist)of the two layers arise at resonances in these structures.In contrast,in the gain-gain double-layer cluster,optical torques on both layers have no significant increase and the two layers rotate in the same direction at resonances.This work provides an elaborate investigation on the gain media-induced optical twist,which offers more choices for optical micromanipulation.展开更多
This paper presents the theoretical studies on the propagation of optical pulses in a deviated Gaussian gained Kerr medium.Our numerical results have shown,for the first time,that the compression of optical pulse widt...This paper presents the theoretical studies on the propagation of optical pulses in a deviated Gaussian gained Kerr medium.Our numerical results have shown,for the first time,that the compression of optical pulse widths varies considerably for differently deviated Gaussian gain.展开更多
The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics...The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.展开更多
In this study, the optical gain coefficient due to spontaneous emission for the conjugated compound 1-(4’-(diphenylamino)-[1,1’-biphenyl]-4-yl)ethanone (DBE) in two solvents, Tetrahydrofuran (THF) and Dichloromethan...In this study, the optical gain coefficient due to spontaneous emission for the conjugated compound 1-(4’-(diphenylamino)-[1,1’-biphenyl]-4-yl)ethanone (DBE) in two solvents, Tetrahydrofuran (THF) and Dichloromethane (DCM) was investigated using the variable stripe length method. The solutions were placed in 10 mm cuvettes and pumped optically with N2 laser (337 nm) with pulse duration of 1.2 ns and repetition rate of 10 Hz. A maximum net gain of 12 cm−1 for the compound in THF, and 7 cm−1 for the compound in DCM were recorded at the input energy of 162 μJ. The fluorescence quantum yields (∅f) of the compound were determined at the excitation wavelength of 337 nm using coumarin as a standard. The values of (∅f) for the samples in DCM and THF solvents were found to be 0.68 and 0.61, respectively. The high values of quantum yields suggest the possibility of using this material as an active media for lasing and for LED.展开更多
Optical gains of type-Ⅱ In Ga As/Ga As Bi quantum wells(QWs) with W, N, and M shapes are analyzed theoretically for near-infrared laser applications. The bandgap and wave functions are calculated using the self-con...Optical gains of type-Ⅱ In Ga As/Ga As Bi quantum wells(QWs) with W, N, and M shapes are analyzed theoretically for near-infrared laser applications. The bandgap and wave functions are calculated using the self-consistent k·p Hamiltonian, taking into account valence band mixing and the strain effect. Our calculations show that the M-shaped type-Ⅱ QWs are a promising structure for making 1.3 um lasers at room temperature because they can easily be used to obtain 1.3 um for photoluminescence with a proper thickness and have large wave-function overlap for high optical gain.展开更多
The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theor...The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theoretically using four band effective-mass Hamiltonian, which takes into account the effects of the valence band anisotropy and the band mixing. The biaxial strain effect for quantum wires is included in the calculation. The compressive strain in the Zn 1-x Cd x Se wire region increases the energy separation between the uppermost subbands. The optical gain with xy -polarized light is enhanced, while optical gain with z -polarized light is strongly decreased. The xy -polarized optical gain spectrum has a peak at around 2.541 eV, with the transparency carrier density of 0.75×10 18 cm -3 . The calculated results also show that the strain tends to increase the quantum confinement and enhance the anisotropy of the optical transitions.展开更多
ZTE gained the second largest share of the global optical networking market of any company for the second year in a row. ZTE gained 1.8 share points on 2010. In two years, the company moved from world No. 5 to world N...ZTE gained the second largest share of the global optical networking market of any company for the second year in a row. ZTE gained 1.8 share points on 2010. In two years, the company moved from world No. 5 to world No. 2 in the global optical network market, and its annual revenues now surpass $1.7 billion.展开更多
22 August 2012 -- ZTE Corporation, a publicly listed global provider of telecommunications equipment and network solutions, announced its interim results for the six months ended 30 June 2012. Based on both HKFRS and...22 August 2012 -- ZTE Corporation, a publicly listed global provider of telecommunications equipment and network solutions, announced its interim results for the six months ended 30 June 2012. Based on both HKFRS and PRC ASBE, ZTE recorded revenue of RMB 42.64 billion for the period, an increase of 15.2% year-on-year. Pre-tax profit in the period was RMB 656 million, a decrease of 48.5% year-on-year. Basic earnings per share for the period were RMB 0.07. During the reporting period,展开更多
文摘A model for theoretical analysis of nonlinear (or high gain) mode of photoconductive semiconductor switches (PCSS's) is proposed.The switching transition of high gain PCSS's can be described with an optically activated charge domain. The switching characteristics including rise time,delay and their relationship to electric field strength,optical trigger energies are discussed.The formation and radiation transit,accumulation of the charge domain are related with the triggering and sustaining phases of PCSS's,respectively.The results of the mathematical model on this mechanism agree with experimental results.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60978013)the Shanghai Rising Star Project,China (Grant No. 11QA1407400)
文摘We theoretically investigate the Doppler effect on optical bistability in an N-type active Raman gain atomic system inside an optical ring cavity. It is shown that the Doppler effect can greatly enhance the dispersion and thus create the bistable behaviour or greatly increase the bistable region, which has been known as the positive Doppler effect on optical bistability. In addition, we find that a positive Doppler effect can change optical bistability from the hybrid dispersion-gain type to a dispersive type.
基金supported by the National Natural Science Foundation of China(Nos.61875086,61377086)Aerospace Science Foundation of China(No.2016ZD52042)Foundation of Graduate Innovation Center in Nanjing University of Aeronautics and Astronautics(No.kfjj20170801)。
文摘GeO_(2) is commonly used as dopant to adjust the refractive index profile(RIP)and the acoustic velocity profile(AVP)in the fiber,thereby forming different Brillouin gain spectrum(BGS)characteristics such as Brillouin gain,acoustic mode number and peak intensity difference.When an optical fiber is used in optical fiber sensing or communication system,its BGS characteristics may play an important role in determining the performance of the system.In this paper,finite element analysis(FEA)method is used to study the influence of refractive index distribution and its corresponding AVP on the BGS in step-index,graded-index,and complex-index optical fibers.A new method has also been proposed to efficiently discriminate acoustic mode solution and obtain the new and full images of total Brillouin gain and acoustic modes number of the fiber as a function of the refractive index distribution,considering the influence of changing the refractive index difference and the geometric size simultaneously.For each type of optical fiber,the recommended parameter range is provided for optical fiber sensing and optical fiber communication.Moreover,the suitable optical fiber with close peak intensity in its multi-peak BGS is explored and achieved,which can be used in Brillouin beat spectrum detection systems to improve sensing accuracy.
文摘The design concept of semiconductor optical amplifier(SOA)and gain chip used in wavelength tunable lasers(TL)is discussed in this paper.The design concept is similar to that of a conventional SOA or a laser;however,there are a few different points.An SOA in front of the tunable laser should be polarization dependent and has low optical confinement factor.To obtain wide gain bandwidth at the threshold current,the gain chip used in the tunable laser cavity should be something between SOA and fixed-wavelength laser design,while the fixed-wavelength laser has high optical confinement factor.Detailed discussion is given with basic equations and some simulation results on saturation power of the SOA and gain bandwidth of gain chip are shown.
基金Project supported by the National Basic Research Development Program of China(Grant No.2013CB632103)the National Natural Science Foundation of China(Grant Nos.61377045,61435013,and 61176013)
文摘Band structure, electron distribution, direct-bandgap light emission, and optical gain of tensile strained, n-doped Ge at different temperatures were calculated. We found that the heating effects not only increase the electron occupancy rate in the Γ valley of Ge by thermal excitation, but also reduce the energy difference between its Γ valley and L valley. However,the light emission enhancement of Ge induced by the heating effects is weakened with increasing tensile strain and n-doping concentration. This phenomenon could be explained by that Ge is more similar to a direct bandgap material under tensile strain and n-doping. The heating effects also increase the optical gain of tensile strained, n-doped Ge at low temperature, but decrease it at high temperature. At high temperature, the hole and electron distributions become more flat, which prevent obtaining higher optical gain. Meanwhile, the heating effects also increase the free-carrier absorption. Therefore, to obtain a higher net maximum gain, the tensile strained, n-doped Ge films on Si should balance the gain increased by the heating effects and the optical loss induced by the free-carrier absorption.
基金Project supported by the National Natural Science Foundation of China(Grant No.61275146)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120002110066)the Special Program of the Co-construction with Beijing Municipal Government of China(Grant No.20121000302)
文摘The steady-state gain distribution in cladding pumped thulium-doped fiber laser(TDFL) is analytically and numerically solved based on the rate equations including loss coefficients and cross relaxation effect. With the gain curve, a problem, which is named optical feedback inhibition(OFI) and always occurs in tandem TDFL-Ho:YAG laser system, is analyzed quantitatively. The actual characteristics of output spectra and power basically prove the conclusion of theoretical analysis. Then a simple mirror-deflected L-shaped cavity is employed to restrain the external feedback and simplify the structure of fiber-bulk Ho:YAG laser. Finally, 25 W of 2097-nm laser power and 51.2% of optical-to-optical conversion efficiency are obtained, and the beam quality factor is less than 1.43 obtained by knife-edge method.
基金Project supported by the National Natural Science Foundation of China (Grant No 50240420656).
文摘Using transmission electron microscopy (TEM) and x-ray diffraction analysis, we have studied the structural and morphological evolution of highly Er/Yb co-doped A1203 films in the temperature range from 600℃-900℃. By comparison with TEM observation, the annealing behaviours of photoluminescence (PL) emission and optical loss were found to have relation to the structure and morphology. The increase of PL intensity and optical loss above 800℃ might result from the crystallization of amorphous Al2O3 films. Based on the study on the structure and morphology, a rate equation propagation model of a multilevel system was used to calculate the optical gains of Er-doped Al2O3 planar waveguide amplifiers involving the variation of PL efficiency and optical loss with annealing temperature. It was found that the amplifiers had an optimized optical gain at the temperature corresponding to the minimum of optical loss, rather than at the temperature corresponding to the maximum of PL efficiency, suggesting that the optical loss is a key factor for determining the optical gain of an Er-doped Al2O3 planar waveguide amplifier.
基金the National Natural Science Foundation of China(Grant Nos.11674204 and 11704232)the Fund from HK RGC,China(Grant Nos.AoE/P-02/12 and C6013-18GF).
文摘Inducing a significant optical torque remains a challenging task,since the law of angular momentum conservation implies that one has to harvest a lot of light.Such a problem was partially resolved by using optical twist via strong internal multiple scattering to recycle the photons,and one can induce a large torque per unit of radiation cross section.By using the Maxwell stress tensor and the generalized Lorentz-Mie scattering theory for multi-spheres,we investigate the influence of gain materials in further amplifying optical torque in the optical twist settings.It is found that,when combined with a gain layer,the optical torque of lossy(both in PT-and non-PT-symmetric structures)or lossless(low dielectric materials)clusters at resonance could be one order of magnitude larger than those of a single layer and previous studied plasmonic double layer structures.Moreover,the gain-enhanced large opposite rotations(i.e.,optical twist)of the two layers arise at resonances in these structures.In contrast,in the gain-gain double-layer cluster,optical torques on both layers have no significant increase and the two layers rotate in the same direction at resonances.This work provides an elaborate investigation on the gain media-induced optical twist,which offers more choices for optical micromanipulation.
文摘This paper presents the theoretical studies on the propagation of optical pulses in a deviated Gaussian gained Kerr medium.Our numerical results have shown,for the first time,that the compression of optical pulse widths varies considerably for differently deviated Gaussian gain.
文摘The theory model of fiber optical parametric amplifier (FOPA) was introduced, which is based on optical nonlinear effect. And then numerical simulation was done to analyze and discuss the gain spectral characteristics of one-pump and two-pump FOPA. The results show that for one-pump FOPA, when pump wavelength is near to fiber zero-dispersion wavelength(ZDW), the gain flatness is better, and with the increase of the pump power, fiber length and its nonlinear coefficient, the gain value will increase while the gain bandwidth will become narrow. For two-pump FOPA, when the pump central wavelength is near to fiber ZDW, the gain flatness is better. Moreover, by decreasing the space of two pumps wavelength, the gain flatness can be improved. Finally, some problems existing in FOPA were addressed.
文摘In this study, the optical gain coefficient due to spontaneous emission for the conjugated compound 1-(4’-(diphenylamino)-[1,1’-biphenyl]-4-yl)ethanone (DBE) in two solvents, Tetrahydrofuran (THF) and Dichloromethane (DCM) was investigated using the variable stripe length method. The solutions were placed in 10 mm cuvettes and pumped optically with N2 laser (337 nm) with pulse duration of 1.2 ns and repetition rate of 10 Hz. A maximum net gain of 12 cm−1 for the compound in THF, and 7 cm−1 for the compound in DCM were recorded at the input energy of 162 μJ. The fluorescence quantum yields (∅f) of the compound were determined at the excitation wavelength of 337 nm using coumarin as a standard. The values of (∅f) for the samples in DCM and THF solvents were found to be 0.68 and 0.61, respectively. The high values of quantum yields suggest the possibility of using this material as an active media for lasing and for LED.
基金Supported by the National Basic Research Program of China under Grant No 2014CB643902the Key Program of Natural Science Foundation of China under Grant No 61334004+3 种基金the National Natural Science Foundation of China under Grant No 61404152the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No XDA5-1the Foundation of National Laboratory for Infrared Physics,the Key Research Program of the Chinese Academy of Sciences under Grant No KGZDEW-804the Creative Research Group Project of Natural Science Foundation of China under Grant No 61321492
文摘Optical gains of type-Ⅱ In Ga As/Ga As Bi quantum wells(QWs) with W, N, and M shapes are analyzed theoretically for near-infrared laser applications. The bandgap and wave functions are calculated using the self-consistent k·p Hamiltonian, taking into account valence band mixing and the strain effect. Our calculations show that the M-shaped type-Ⅱ QWs are a promising structure for making 1.3 um lasers at room temperature because they can easily be used to obtain 1.3 um for photoluminescence with a proper thickness and have large wave-function overlap for high optical gain.
文摘The subband structures, distributions of electron and hole wave functions, state density, optical gain spectra, and transparency carrier density of the V-groove Zn 1-x Cd x Se/ZnSe quantum wires are investigated theoretically using four band effective-mass Hamiltonian, which takes into account the effects of the valence band anisotropy and the band mixing. The biaxial strain effect for quantum wires is included in the calculation. The compressive strain in the Zn 1-x Cd x Se wire region increases the energy separation between the uppermost subbands. The optical gain with xy -polarized light is enhanced, while optical gain with z -polarized light is strongly decreased. The xy -polarized optical gain spectrum has a peak at around 2.541 eV, with the transparency carrier density of 0.75×10 18 cm -3 . The calculated results also show that the strain tends to increase the quantum confinement and enhance the anisotropy of the optical transitions.
文摘ZTE gained the second largest share of the global optical networking market of any company for the second year in a row. ZTE gained 1.8 share points on 2010. In two years, the company moved from world No. 5 to world No. 2 in the global optical network market, and its annual revenues now surpass $1.7 billion.
文摘22 August 2012 -- ZTE Corporation, a publicly listed global provider of telecommunications equipment and network solutions, announced its interim results for the six months ended 30 June 2012. Based on both HKFRS and PRC ASBE, ZTE recorded revenue of RMB 42.64 billion for the period, an increase of 15.2% year-on-year. Pre-tax profit in the period was RMB 656 million, a decrease of 48.5% year-on-year. Basic earnings per share for the period were RMB 0.07. During the reporting period,