The nonlinear Kortewege-de Varies(KdV)equation is a functional description for modelling ion-acoustic waves in plasma,long internal waves in a density-stratified ocean,shallow-water waves and acoustic waves on a cryst...The nonlinear Kortewege-de Varies(KdV)equation is a functional description for modelling ion-acoustic waves in plasma,long internal waves in a density-stratified ocean,shallow-water waves and acoustic waves on a crystal lattice.This paper focuses on developing and analysing a resilient double parametric analytical approach for the nonlinear fuzzy fractional KdV equation(FFKdVE)under gH-differentiability of Caputo fractional order,namely the q-Homotopy analysis method with the Shehu transform(q-HASTM).A triangular fuzzy number describes the Caputo fractional derivative of orderα,0<α≤1,for modelling problem.The fuzzy velocity profiles with crisp and fuzzy conditions at different spatial positions are in-vestigated using a robust double parametric form-based q-HASTM with its convergence analysis.The ob-tained results are compared with existing works in the literature to confirm the efficacy and effectiveness of the method.展开更多
This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acous...This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acoustic waves in plasma.Indeed,the main goal of this investigation is to employ a semi-analytical method based on the homotopy perturbation transform method(HPTM)to obtain the numerical findings of nonlinear dispersive and fifth order KdV models for investigating the behaviour of magneto-acoustic waves in plasma via fuzziness.This approach is connected with the fuzzy generalized integral transform and HPTM.Besides that,two novel results for fuzzy generalized integral transforma-tion concerning fuzzy partial gH-derivatives are presented.Several illustrative examples are illustrated to show the effectiveness and supremacy of the proposed method.Furthermore,2D and 3D simulations de-pict the comparison analysis between two fractional derivative operators(Caputo and Atangana-Baleanu fractional derivative operators in the Caputo sense)under generalized gH-differentiability.The projected method(GHPTM)demonstrates a diverse spectrum of applications for dealing with nonlinear wave equa-tions in scientific domains.The current work,as a novel use of GHPTM,demonstrates some key differ-ences from existing similar methods.展开更多
文摘The nonlinear Kortewege-de Varies(KdV)equation is a functional description for modelling ion-acoustic waves in plasma,long internal waves in a density-stratified ocean,shallow-water waves and acoustic waves on a crystal lattice.This paper focuses on developing and analysing a resilient double parametric analytical approach for the nonlinear fuzzy fractional KdV equation(FFKdVE)under gH-differentiability of Caputo fractional order,namely the q-Homotopy analysis method with the Shehu transform(q-HASTM).A triangular fuzzy number describes the Caputo fractional derivative of orderα,0<α≤1,for modelling problem.The fuzzy velocity profiles with crisp and fuzzy conditions at different spatial positions are in-vestigated using a robust double parametric form-based q-HASTM with its convergence analysis.The ob-tained results are compared with existing works in the literature to confirm the efficacy and effectiveness of the method.
文摘This paper presents a study of nonlinear waves in shallow water.The Korteweg-de Vries(KdV)equa-tion has a canonical version based on oceanography theory,the shallow water waves in the oceans,and the internal ion-acoustic waves in plasma.Indeed,the main goal of this investigation is to employ a semi-analytical method based on the homotopy perturbation transform method(HPTM)to obtain the numerical findings of nonlinear dispersive and fifth order KdV models for investigating the behaviour of magneto-acoustic waves in plasma via fuzziness.This approach is connected with the fuzzy generalized integral transform and HPTM.Besides that,two novel results for fuzzy generalized integral transforma-tion concerning fuzzy partial gH-derivatives are presented.Several illustrative examples are illustrated to show the effectiveness and supremacy of the proposed method.Furthermore,2D and 3D simulations de-pict the comparison analysis between two fractional derivative operators(Caputo and Atangana-Baleanu fractional derivative operators in the Caputo sense)under generalized gH-differentiability.The projected method(GHPTM)demonstrates a diverse spectrum of applications for dealing with nonlinear wave equa-tions in scientific domains.The current work,as a novel use of GHPTM,demonstrates some key differ-ences from existing similar methods.