To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
Purpose: Patient-specific quality assurance (PSQA) requires manual operation of different workstations, which is time-consuming and error-prone. Therefore, developing automated solutions to improve efficiency and accu...Purpose: Patient-specific quality assurance (PSQA) requires manual operation of different workstations, which is time-consuming and error-prone. Therefore, developing automated solutions to improve efficiency and accuracy is a priority. The purpose of this study was to develop a general software interface with scripting on a human interactive device (HID) for improving the efficiency and accuracy of manual quality assurance (QA) procedures. Methods: As an initial application, we aimed to automate our PSQA workflow that involves Varian Eclipse treatment planning system, Elekta MOSAIQ oncology information system and PTW Verisoft application. A general platform, the AutoFrame interface with two imbedded subsystems—the AutoFlow and the PyFlow, was developed with a scripting language for automating human operations of aforementioned systems. The interface included three functional modules: GUI module, UDF script interpreter and TCP/IP communication module. All workstations in the PSQA process were connected, and most manual operations were automated by AutoFrame sequentially or in parallel. Results: More than 20 PSQA tasks were performed both manually and using the developed AutoFrame interface. On average, 175 (±12) manual operations of the PSQA procedure were eliminated and performed by the automated process. The time to complete a PSQA task was 8.23 (±0.78) minutes for the automated workflow, in comparison to 13.91 (±3.01) minutes needed for manual operations. Conclusion: We have developed the AutoFrame interface framework that successfully automated our PSQA procedure, and significantly reduced the time, human (control/clicking/typing) errors, and operators’ stress. Future work will focus on improving the system’s flexibility and stability and extending its operations to other QA procedures.展开更多
A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in h...A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in health and illnesses.Any biotic and abiotic component ensuring a balanced host-microbiota interaction are potential microbiome therapeutic agents to overcome human diseases.Plant metabolites are continually being used to treat various illnesses.These metabolites target the host’s metabolic machinery and host-gut microbiota interactions to overcome human diseases.Despite the paramount therapeutic significance of the factors affecting host-microbiota interactions,a comprehensive overview of the modulatory role of plant-derived metabolites in host-microbiota interactions is lacking.The current review puts an effort into comprehending the role of medicinal plants in gut microbiota modulation to mitigate various human illnesses.It would develop a holistic understanding of hostmicrobiota interactions and the role of effectors in health and diseases.展开更多
Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which ...Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation.展开更多
Background: Sugar moiety of macromolecules is today very well known for its implications in many biological recognition mechanisms including cell-cell, extracellular matrix-cell and/or bacteria-cell interactions. In t...Background: Sugar moiety of macromolecules is today very well known for its implications in many biological recognition mechanisms including cell-cell, extracellular matrix-cell and/or bacteria-cell interactions. In this context lectins, which are carbohydrate-binding proteins displaying a high affinity for sugar groups of other molecules, are of a great importance, notably in immune response involving bacteria, viruses and fungi. As protein-carbohydrate interactions are often mediated by ions such as calcium, zinc or magnesium, we were prompted to study the effect of a thermal spring water (which contains this type of component) on interactions existing between: 1) osidic receptors of human normal keratinocytes and 2) two lectins greatly implicated in the immune response mechanisms (i.e. the dectin-1 and the langerin), and their ligands. Materials and Methods: In a first series of experiments, we studied the effect of increasing concentrations of a thermal spring water on interactions existing between glycosylated molecules and the osidic receptors expressed at the normal human keratinocytes surface. In a second step, and in order to better understand the putative effect of our thermal spring water on the immune response, we analyzed its effect on the interactions existing between the dectin-1 (implicated in the recognition of bacteria, viruses and fungi) and the langerin (expressed by Langerhans cells, the immune cells of the cutaneous tissue), and their ligands in a model using recombinant human lectins and appropriate binding molecules. Results: We showed here that our thermal spring water was able to reinforce interactions between keratinocytes osidic receptors and some of their ligands, in a dose-related manner: From 8% to 55% of increase with 10% to 30% (v/v) of thermal spring water. In the second part of our studies, we also showed that our thermal spring water was able to modulate interactions between dectin-1 and langerin and their ligands through a biphasic effect: Interactions were enhanced by more than 40% and 20% respectively with 10% of thermal spring water, and return to their basal level or lower for higher concentrations. Conclusion: The tested thermal spring water, probably due to its ionic composition, could significantly affect interactions of osidic receptors with their ligands. This property could be of a great interest to help immune system to maintain an appropriate “vigilance state” by using the thermal water at up to a concentration of 10%, and by avoiding any runaway reaction in case of aggression, by using concentrations higher than 10%. .展开更多
Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide...Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.展开更多
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi...A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.展开更多
Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has at...Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has attractedmany researchers to this field. Inspired by the existing recognition systems,this paper proposes a new and efficient human-object interaction recognition(HOIR) model which is based on modeling human pose and scene featureinformation. There are different aspects involved in an interaction, includingthe humans, the objects, the various body parts of the human, and the backgroundscene. Themain objectives of this research include critically examiningthe importance of all these elements in determining the interaction, estimatinghuman pose through image foresting transform (IFT), and detecting the performedinteractions based on an optimizedmulti-feature vector. The proposedmethodology has six main phases. The first phase involves preprocessing theimages. During preprocessing stages, the videos are converted into imageframes. Then their contrast is adjusted, and noise is removed. In the secondphase, the human-object pair is detected and extracted from each image frame.The third phase involves the identification of key body parts of the detectedhumans using IFT. The fourth phase relates to three different kinds of featureextraction techniques. Then these features are combined and optimized duringthe fifth phase. The optimized vector is used to classify the interactions in thelast phase. TheMSRDaily Activity 3D dataset has been used to test this modeland to prove its efficiency. The proposed system obtains an average accuracyof 91.7% on this dataset.展开更多
AIM: To investigate the biological function of 14-3-3σ protein and to look for proteins that interact with 14-3-3σ protein in colon cancer stem cells. METHODS: Reverse transcription polymerase chain reaction was per...AIM: To investigate the biological function of 14-3-3σ protein and to look for proteins that interact with 14-3-3σ protein in colon cancer stem cells. METHODS: Reverse transcription polymerase chain reaction was performed to amplify the 14-3-3σ gene from the mRNA of colon cancer stem cells. The gene was then cloned into the pGEM-T vector. After being sequenced, the target gene 14-3-3σ was cut from the pGEM-T vector and cloned into the pGBKT7 yeast expression plasmid. Then, the bait plasmid pGBKT7-14-3-3σ was transformed into the yeast strain AH109. After the expression of the pGBKT7-14-3-3σ fusion protein in the AH109 yeast strain was accomplished, a yeast two-hybrid screening assay was performed by mating AH109 with Y187 that contained a HeLa cDNA library plasmid. The interaction between the 14-3-3σ protein and the proteins obtained from positive colonies was further confirmed by repeating the yeast two-hybridscreen. After extracting and sequencing the plasmids from the positive colonies, we performed a bioinformatics analysis. A coimmunoprecipitation assay was performed to confirm the interaction between 14-3-3σ and the proteins obtained from the positive colonies. Finally, we constructed 14-3-3σ and potassium channel modulatory factor 1 (KCMF1) siRNA expression plasmids and transfected them into colon cancer stem cells. RESULTS: The bait plasmid pGBKT7-14-3-3σ was constructed successfully, and the 14-3-3σ protein had no toxic or autonomous activation effect on the yeast. Nineteen true-positive colonies were selected and sequenced, and their full-length sequences were obtained. We searched for homologous DNA sequences for these sequences from GenBank. Among the positive colonies, four coding genes with known functions were obtained, including KCMF1 , quinone oxidore-ductase (NQO2 ), hydroxyisobutyrate dehydrogenase (HIBADH ) and 14-3-3σ . For the subsequent coimmu-noprecipitation assay, the plasmids PCDEF-Flag-14-3-3σ, PCDEF-Myc-KCMF1, PCDEF-Myc-NQO2 and PCDEF-Myc-HIBADH were successfully constructed, and the sequences were further confirmed by DNA sequencing. The Fugene 6 reagent was used to transfect the plasmids, and fluorescence-activated cell sorting analysis showed the transfection efficiency was 97.8% after 48 h. The HEK 293FT cells showed the stable expression of the PCDEF-Flag-14-3-3σ, PCDEF-Myc-KCMF1, PCDEF-Myc-NQO2 and PCDEF-Myc-HIBADH plasmids. After anti-Myc antibody immunoprecipitation with Myc-KCMF1, Myc-NQO2 and Myc-HIBADH from cell lysates, the presence of Flag-14-3-3σ protein in the immuno-precipitated complex was determined by western blot analysis. The knock-down expression of the 14-3-3σ and KCMF1 proteins significantly inhibited cell proliferation and colony formation of SW1116csc. CONCLUSION: Genes of the proteins that interactedwith 14-3-3σ were successfully screened from a HeLa cDNA library. KCMF1 and 14-3-3σ protein may affect the proliferation and colony formation of human colon cancer stem cells.展开更多
Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precise...Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precisely.This research focuses on recognizing human interaction behaviors using a static image,which is challenging due to the complexity of diverse actions.The overall purpose of this study is to develop a robust and accurate system for human interaction recognition.This research presents a novel image-based human interaction recognition method using a Hidden Markov Model(HMM).The technique employs hue,saturation,and intensity(HSI)color transformation to enhance colors in video frames,making them more vibrant and visually appealing,especially in low-contrast or washed-out scenes.Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method.Feature extraction uses the features from Accelerated Segment Test(FAST),Oriented FAST,and Rotated BRIEF(ORB)techniques.The application of Quadratic Discriminant Analysis(QDA)for feature fusion and discrimination enables high-dimensional data to be effectively analyzed,thus further enhancing the classification process.It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities.The impressive accuracy rates of 93%and 94.6%achieved in the BIT-Interaction and UT-Interaction datasets respectively,highlight the success and reliability of the proposed technique.The proposed approach addresses challenges in various domains by focusing on frame improvement,silhouette and feature extraction,feature fusion,and HMM classification.This enhances data quality,accuracy,adaptability,reliability,and reduction of errors.展开更多
Public transport services, particularly bus services, play an important role in a sustainable transportation system. However, despite various efforts, bus ridership has decreased. The appearance of shared and on-deman...Public transport services, particularly bus services, play an important role in a sustainable transportation system. However, despite various efforts, bus ridership has decreased. The appearance of shared and on-demand vehicle services is one of the main reasons for this issue. In addition, bus tourism services have been successfully developed to meet the exigent needs of tourists. Therefore, a new level of daily bus service is necessary to adapt to the changing demands of customers. Bus interaction (BI) plays an important role in bus services. Nevertheless, the conventional concept of BI mainly refers to users, physical interaction, and safety, but it does not address non-users, non-physical interactions, service quality, and other aspects. This study aims to elaborate on a new concept of bus services. Based on this, we developed a theoretical framework for BI. A meta-analysis was then conducted to identify the achievements and untouched aspects. The results of this study provide three main contributions. First, an unprecedented novel concept of BI is defined, including 13 types of interactions. Second, a comprehensive theoretical framework of BI is established based on the relationships between eight sustainable bus system sub-aspects and 13 BI types. Third, based on the theoretical framework and findings of the reviewed studies, a common finding comprehensive framework of BI is completed, which is accompanied by 1) key findings of the 13 BI types, 2) conclusions of traffic conditions affecting BI research, 3) BI research gaps, and 4) 16 main suggestions for future BI research.展开更多
In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on t...In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on the passive Radio-Frequency IDentification(RFID)technology to precisely track the pose of a handheld controller,and then transfer the pose information to navigate the UAV.A prototype of the handheld controller is created by attaching three or more Ultra High Frequency(UHF)RFID tags to a board.A Commercial Off-The-Shelf(COTS)RFID reader with multiple antennas is deployed to collect the observations of the tags.First,the precise positions of all the tags can be obtained by our proposed method,which leverages a Bayesian filter and Channel State Information(CSI)phase measurements collected from the RFID reader.Second,we introduce a Singular Value Decomposition(SVD)based approach to obtain a 6-DoF(Degrees of Freedom)pose of the controller from estimated positions of the tags.Furthermore,the pose of the controller can be precisely tracked in a real-time manner,while the user moves the controller.Finally,control commands will be generated from the controller's pose and sent to the UAV for navigation.The performance of the RFHUI is evaluated by several experiments.The results show that it provides precise poses with 0.045m mean error in position and 2.5∘mean error in orientation for the controller,and enables the controller to precisely and intuitively navigate the UAV in an indoor environment.展开更多
Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of airc...Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of aircraft design, the different stages of the lifecycle of aircraft must be thought about, which include the trial manufacture, assembly, maintenance, recycling and destruction of the product. Recently, thanks to the development of the virtual reality and augmented reality, some low-cost and fast solutions are found for the product assembly. This paper presents a mixed reality-based interactive technology for the aircraft cabin assembly, which can enhance the efficiency of the assemblage in a virtual environment in terms of vision, information and operation. In the mixed reality-based assembly environment, the physical scene can be obtained by a camera and then generated by a computer. The virtual parts, the features of visual assembly, the navigation information, the physical parts and the physical assembly environment will be mixed and presented in the same assembly scene. The mixed or the augmented information will provide some assembling information as a detailed assembly instruction in the mixed reality-based assembly environment. Constraint proxy and its match rules help to reconstruct and visualize the restriction relationship among different parts, and to avoid the complex calculation of constraint's match. Finally, a desktop prototype system of virtual assembly has been built to assist the assembly verification and training with the virtual hand.展开更多
Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Inte...Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Interactions by humans may be neutral,positive or negative in nature.Regular pleasant contact with humans may result in desirable alterations in the physiology,behaviour,health and productivity of farm animals.On the contrary,animals that were subjected to aversive human contact were highly fearful of humans and their growth and reproductive performance could be compromised.Farm animals are particularly sensitive to human stimulation that occurs early in life,while many systems of the animals are still developing.This may have long-lasting impact and could possibly modify their genetic potential.The question as to how human contact can have a positive impact on responses to stressors,and productivity is not well understood.Recent work in our laboratory suggested that pleasant human contact may alter ability to tolerate various stressors through enhanced heat shock protein(hsp) 70 expression.The induction of hsp is often associated with increased tolerance to environmental stressors and disease resistance in animals.The attitude and consequent behaviour of stockpeople affect the animals' fear of human which eventually influence animals' productivity and welfare.Other than attitude and behaviour,technical skills,knowledge,job motivation,commitment and job satisfaction are prerequisites for high job performance.展开更多
农业测控系统的用户交互性存在改进空间,随着自然语言语义处理技术的不断进步,提升农业测控领域中复杂的控制和查询操作的用户友好性变得至关重要,这有助于降低用户的操作成本。本文提出了一种面向农业测控领域的自然语言接口(agricultu...农业测控系统的用户交互性存在改进空间,随着自然语言语义处理技术的不断进步,提升农业测控领域中复杂的控制和查询操作的用户友好性变得至关重要,这有助于降低用户的操作成本。本文提出了一种面向农业测控领域的自然语言接口(agricultural measurement and control natural language interface,AMC-NLI),旨在改进农业测控平台的用户体验。通过BERT-BiLSTM-ATT-CRF-OPO(bidirectional encoder representations from transformers-bi-directional long shortterm memory-attention-conditional random field)的语义解析模型,识别并提取农业指令中的实体,并进行操作-地点-对象三元组语句(operate-place-object,OPO)的槽填充。使得用户的自然语言输入能够被转化为结构化的三元组语句,实现用户输入的指令转换为相应的参数,并通过物联网网关发送到相应的设备。试验结果表明在AMC-NLI农业测控指令交互方面,该模型表现出色,准确率,精确率、召回率,F值和平均最大响应时间分别达到了91.63%、92.77%、92.48%、91.74%和2.45 s,为农业信息化管控提供了更为便捷的互动方式。展开更多
A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize huma...A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on2D-Gabor, uniform local binary pattern(LBP) operator, and multiclass extreme learning machine(ELM) classifier is presented,which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios,i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
文摘Purpose: Patient-specific quality assurance (PSQA) requires manual operation of different workstations, which is time-consuming and error-prone. Therefore, developing automated solutions to improve efficiency and accuracy is a priority. The purpose of this study was to develop a general software interface with scripting on a human interactive device (HID) for improving the efficiency and accuracy of manual quality assurance (QA) procedures. Methods: As an initial application, we aimed to automate our PSQA workflow that involves Varian Eclipse treatment planning system, Elekta MOSAIQ oncology information system and PTW Verisoft application. A general platform, the AutoFrame interface with two imbedded subsystems—the AutoFlow and the PyFlow, was developed with a scripting language for automating human operations of aforementioned systems. The interface included three functional modules: GUI module, UDF script interpreter and TCP/IP communication module. All workstations in the PSQA process were connected, and most manual operations were automated by AutoFrame sequentially or in parallel. Results: More than 20 PSQA tasks were performed both manually and using the developed AutoFrame interface. On average, 175 (±12) manual operations of the PSQA procedure were eliminated and performed by the automated process. The time to complete a PSQA task was 8.23 (±0.78) minutes for the automated workflow, in comparison to 13.91 (±3.01) minutes needed for manual operations. Conclusion: We have developed the AutoFrame interface framework that successfully automated our PSQA procedure, and significantly reduced the time, human (control/clicking/typing) errors, and operators’ stress. Future work will focus on improving the system’s flexibility and stability and extending its operations to other QA procedures.
基金financial support under Maharshi Dayanand University Rohtak for a Post-Seed Research Grant(DRD/23/75)sanctioned to Dr.NS Chauhan.
文摘A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in health and illnesses.Any biotic and abiotic component ensuring a balanced host-microbiota interaction are potential microbiome therapeutic agents to overcome human diseases.Plant metabolites are continually being used to treat various illnesses.These metabolites target the host’s metabolic machinery and host-gut microbiota interactions to overcome human diseases.Despite the paramount therapeutic significance of the factors affecting host-microbiota interactions,a comprehensive overview of the modulatory role of plant-derived metabolites in host-microbiota interactions is lacking.The current review puts an effort into comprehending the role of medicinal plants in gut microbiota modulation to mitigate various human illnesses.It would develop a holistic understanding of hostmicrobiota interactions and the role of effectors in health and diseases.
基金the National Natural Science Foundation of China(No.61975015)the Research and Innovation Project for Graduate Students at Zhongyuan University of Technology(No.YKY2024ZK14).
文摘Human posture estimation is a prominent research topic in the fields of human-com-puter interaction,motion recognition,and other intelligent applications.However,achieving highaccuracy in key point localization,which is crucial for intelligent applications,contradicts the lowdetection accuracy of human posture detection models in practical scenarios.To address this issue,a human pose estimation network called AT-HRNet has been proposed,which combines convolu-tional self-attention and cross-dimensional feature transformation.AT-HRNet captures significantfeature information from various regions in an adaptive manner,aggregating them through convolu-tional operations within the local receptive domain.The residual structures TripNeck and Trip-Block of the high-resolution network are designed to further refine the key point locations,wherethe attention weight is adjusted by a cross-dimensional interaction to obtain more features.To vali-date the effectiveness of this network,AT-HRNet was evaluated using the COCO2017 dataset.Theresults show that AT-HRNet outperforms HRNet by improving 3.2%in mAP,4.0%in AP75,and3.9%in AP^(M).This suggests that AT-HRNet can offer more beneficial solutions for human posture estimation.
文摘Background: Sugar moiety of macromolecules is today very well known for its implications in many biological recognition mechanisms including cell-cell, extracellular matrix-cell and/or bacteria-cell interactions. In this context lectins, which are carbohydrate-binding proteins displaying a high affinity for sugar groups of other molecules, are of a great importance, notably in immune response involving bacteria, viruses and fungi. As protein-carbohydrate interactions are often mediated by ions such as calcium, zinc or magnesium, we were prompted to study the effect of a thermal spring water (which contains this type of component) on interactions existing between: 1) osidic receptors of human normal keratinocytes and 2) two lectins greatly implicated in the immune response mechanisms (i.e. the dectin-1 and the langerin), and their ligands. Materials and Methods: In a first series of experiments, we studied the effect of increasing concentrations of a thermal spring water on interactions existing between glycosylated molecules and the osidic receptors expressed at the normal human keratinocytes surface. In a second step, and in order to better understand the putative effect of our thermal spring water on the immune response, we analyzed its effect on the interactions existing between the dectin-1 (implicated in the recognition of bacteria, viruses and fungi) and the langerin (expressed by Langerhans cells, the immune cells of the cutaneous tissue), and their ligands in a model using recombinant human lectins and appropriate binding molecules. Results: We showed here that our thermal spring water was able to reinforce interactions between keratinocytes osidic receptors and some of their ligands, in a dose-related manner: From 8% to 55% of increase with 10% to 30% (v/v) of thermal spring water. In the second part of our studies, we also showed that our thermal spring water was able to modulate interactions between dectin-1 and langerin and their ligands through a biphasic effect: Interactions were enhanced by more than 40% and 20% respectively with 10% of thermal spring water, and return to their basal level or lower for higher concentrations. Conclusion: The tested thermal spring water, probably due to its ionic composition, could significantly affect interactions of osidic receptors with their ligands. This property could be of a great interest to help immune system to maintain an appropriate “vigilance state” by using the thermal water at up to a concentration of 10%, and by avoiding any runaway reaction in case of aggression, by using concentrations higher than 10%. .
文摘Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.
文摘A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)This work has also been supported by PrincessNourah bint Abdulrahman UniversityResearchers Supporting Project Number(PNURSP2022R239),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.Alsothis work was partially supported by the Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has attractedmany researchers to this field. Inspired by the existing recognition systems,this paper proposes a new and efficient human-object interaction recognition(HOIR) model which is based on modeling human pose and scene featureinformation. There are different aspects involved in an interaction, includingthe humans, the objects, the various body parts of the human, and the backgroundscene. Themain objectives of this research include critically examiningthe importance of all these elements in determining the interaction, estimatinghuman pose through image foresting transform (IFT), and detecting the performedinteractions based on an optimizedmulti-feature vector. The proposedmethodology has six main phases. The first phase involves preprocessing theimages. During preprocessing stages, the videos are converted into imageframes. Then their contrast is adjusted, and noise is removed. In the secondphase, the human-object pair is detected and extracted from each image frame.The third phase involves the identification of key body parts of the detectedhumans using IFT. The fourth phase relates to three different kinds of featureextraction techniques. Then these features are combined and optimized duringthe fifth phase. The optimized vector is used to classify the interactions in thelast phase. TheMSRDaily Activity 3D dataset has been used to test this modeland to prove its efficiency. The proposed system obtains an average accuracyof 91.7% on this dataset.
基金Supported by The Medical Guidance Projects of Shanghai Science Committee,No.10411961800National Natural Science Foundation of China,No.81101617
文摘AIM: To investigate the biological function of 14-3-3σ protein and to look for proteins that interact with 14-3-3σ protein in colon cancer stem cells. METHODS: Reverse transcription polymerase chain reaction was performed to amplify the 14-3-3σ gene from the mRNA of colon cancer stem cells. The gene was then cloned into the pGEM-T vector. After being sequenced, the target gene 14-3-3σ was cut from the pGEM-T vector and cloned into the pGBKT7 yeast expression plasmid. Then, the bait plasmid pGBKT7-14-3-3σ was transformed into the yeast strain AH109. After the expression of the pGBKT7-14-3-3σ fusion protein in the AH109 yeast strain was accomplished, a yeast two-hybrid screening assay was performed by mating AH109 with Y187 that contained a HeLa cDNA library plasmid. The interaction between the 14-3-3σ protein and the proteins obtained from positive colonies was further confirmed by repeating the yeast two-hybridscreen. After extracting and sequencing the plasmids from the positive colonies, we performed a bioinformatics analysis. A coimmunoprecipitation assay was performed to confirm the interaction between 14-3-3σ and the proteins obtained from the positive colonies. Finally, we constructed 14-3-3σ and potassium channel modulatory factor 1 (KCMF1) siRNA expression plasmids and transfected them into colon cancer stem cells. RESULTS: The bait plasmid pGBKT7-14-3-3σ was constructed successfully, and the 14-3-3σ protein had no toxic or autonomous activation effect on the yeast. Nineteen true-positive colonies were selected and sequenced, and their full-length sequences were obtained. We searched for homologous DNA sequences for these sequences from GenBank. Among the positive colonies, four coding genes with known functions were obtained, including KCMF1 , quinone oxidore-ductase (NQO2 ), hydroxyisobutyrate dehydrogenase (HIBADH ) and 14-3-3σ . For the subsequent coimmu-noprecipitation assay, the plasmids PCDEF-Flag-14-3-3σ, PCDEF-Myc-KCMF1, PCDEF-Myc-NQO2 and PCDEF-Myc-HIBADH were successfully constructed, and the sequences were further confirmed by DNA sequencing. The Fugene 6 reagent was used to transfect the plasmids, and fluorescence-activated cell sorting analysis showed the transfection efficiency was 97.8% after 48 h. The HEK 293FT cells showed the stable expression of the PCDEF-Flag-14-3-3σ, PCDEF-Myc-KCMF1, PCDEF-Myc-NQO2 and PCDEF-Myc-HIBADH plasmids. After anti-Myc antibody immunoprecipitation with Myc-KCMF1, Myc-NQO2 and Myc-HIBADH from cell lysates, the presence of Flag-14-3-3σ protein in the immuno-precipitated complex was determined by western blot analysis. The knock-down expression of the 14-3-3σ and KCMF1 proteins significantly inhibited cell proliferation and colony formation of SW1116csc. CONCLUSION: Genes of the proteins that interactedwith 14-3-3σ were successfully screened from a HeLa cDNA library. KCMF1 and 14-3-3σ protein may affect the proliferation and colony formation of human colon cancer stem cells.
基金funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/6)supported via funding from Prince Satam bin Abdulaziz University Project Number(PSAU/2023/R/1444)+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R348)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,and this work was also supported by the Ministry of Science and ICT(MSIT),South Korea,through the ICT Creative Consilience Program supervised by the Institute for Information and Communications Technology Planning and Evaluation(IITP)under Grant IITP-2023-2020-0-01821.
文摘Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precisely.This research focuses on recognizing human interaction behaviors using a static image,which is challenging due to the complexity of diverse actions.The overall purpose of this study is to develop a robust and accurate system for human interaction recognition.This research presents a novel image-based human interaction recognition method using a Hidden Markov Model(HMM).The technique employs hue,saturation,and intensity(HSI)color transformation to enhance colors in video frames,making them more vibrant and visually appealing,especially in low-contrast or washed-out scenes.Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method.Feature extraction uses the features from Accelerated Segment Test(FAST),Oriented FAST,and Rotated BRIEF(ORB)techniques.The application of Quadratic Discriminant Analysis(QDA)for feature fusion and discrimination enables high-dimensional data to be effectively analyzed,thus further enhancing the classification process.It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities.The impressive accuracy rates of 93%and 94.6%achieved in the BIT-Interaction and UT-Interaction datasets respectively,highlight the success and reliability of the proposed technique.The proposed approach addresses challenges in various domains by focusing on frame improvement,silhouette and feature extraction,feature fusion,and HMM classification.This enhances data quality,accuracy,adaptability,reliability,and reduction of errors.
文摘Public transport services, particularly bus services, play an important role in a sustainable transportation system. However, despite various efforts, bus ridership has decreased. The appearance of shared and on-demand vehicle services is one of the main reasons for this issue. In addition, bus tourism services have been successfully developed to meet the exigent needs of tourists. Therefore, a new level of daily bus service is necessary to adapt to the changing demands of customers. Bus interaction (BI) plays an important role in bus services. Nevertheless, the conventional concept of BI mainly refers to users, physical interaction, and safety, but it does not address non-users, non-physical interactions, service quality, and other aspects. This study aims to elaborate on a new concept of bus services. Based on this, we developed a theoretical framework for BI. A meta-analysis was then conducted to identify the achievements and untouched aspects. The results of this study provide three main contributions. First, an unprecedented novel concept of BI is defined, including 13 types of interactions. Second, a comprehensive theoretical framework of BI is established based on the relationships between eight sustainable bus system sub-aspects and 13 BI types. Third, based on the theoretical framework and findings of the reviewed studies, a common finding comprehensive framework of BI is completed, which is accompanied by 1) key findings of the 13 BI types, 2) conclusions of traffic conditions affecting BI research, 3) BI research gaps, and 4) 16 main suggestions for future BI research.
文摘In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on the passive Radio-Frequency IDentification(RFID)technology to precisely track the pose of a handheld controller,and then transfer the pose information to navigate the UAV.A prototype of the handheld controller is created by attaching three or more Ultra High Frequency(UHF)RFID tags to a board.A Commercial Off-The-Shelf(COTS)RFID reader with multiple antennas is deployed to collect the observations of the tags.First,the precise positions of all the tags can be obtained by our proposed method,which leverages a Bayesian filter and Channel State Information(CSI)phase measurements collected from the RFID reader.Second,we introduce a Singular Value Decomposition(SVD)based approach to obtain a 6-DoF(Degrees of Freedom)pose of the controller from estimated positions of the tags.Furthermore,the pose of the controller can be precisely tracked in a real-time manner,while the user moves the controller.Finally,control commands will be generated from the controller's pose and sent to the UAV for navigation.The performance of the RFHUI is evaluated by several experiments.The results show that it provides precise poses with 0.045m mean error in position and 2.5∘mean error in orientation for the controller,and enables the controller to precisely and intuitively navigate the UAV in an indoor environment.
基金supported by National Defence Basic Research Foundation of China (Grant No. B1420060173)National Hi-tech Research and Development Program of China (863 Program, Grant No. 2006AA04Z138)
文摘Due to the narrowness of space and the complexity of structure, the assembly of aircraft cabin has become one of the major bottlenecks in the whole manufacturing process. To solve the problem, at the beginning of aircraft design, the different stages of the lifecycle of aircraft must be thought about, which include the trial manufacture, assembly, maintenance, recycling and destruction of the product. Recently, thanks to the development of the virtual reality and augmented reality, some low-cost and fast solutions are found for the product assembly. This paper presents a mixed reality-based interactive technology for the aircraft cabin assembly, which can enhance the efficiency of the assemblage in a virtual environment in terms of vision, information and operation. In the mixed reality-based assembly environment, the physical scene can be obtained by a camera and then generated by a computer. The virtual parts, the features of visual assembly, the navigation information, the physical parts and the physical assembly environment will be mixed and presented in the same assembly scene. The mixed or the augmented information will provide some assembling information as a detailed assembly instruction in the mixed reality-based assembly environment. Constraint proxy and its match rules help to reconstruct and visualize the restriction relationship among different parts, and to avoid the complex calculation of constraint's match. Finally, a desktop prototype system of virtual assembly has been built to assist the assembly verification and training with the virtual hand.
文摘Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Interactions by humans may be neutral,positive or negative in nature.Regular pleasant contact with humans may result in desirable alterations in the physiology,behaviour,health and productivity of farm animals.On the contrary,animals that were subjected to aversive human contact were highly fearful of humans and their growth and reproductive performance could be compromised.Farm animals are particularly sensitive to human stimulation that occurs early in life,while many systems of the animals are still developing.This may have long-lasting impact and could possibly modify their genetic potential.The question as to how human contact can have a positive impact on responses to stressors,and productivity is not well understood.Recent work in our laboratory suggested that pleasant human contact may alter ability to tolerate various stressors through enhanced heat shock protein(hsp) 70 expression.The induction of hsp is often associated with increased tolerance to environmental stressors and disease resistance in animals.The attitude and consequent behaviour of stockpeople affect the animals' fear of human which eventually influence animals' productivity and welfare.Other than attitude and behaviour,technical skills,knowledge,job motivation,commitment and job satisfaction are prerequisites for high job performance.
文摘农业测控系统的用户交互性存在改进空间,随着自然语言语义处理技术的不断进步,提升农业测控领域中复杂的控制和查询操作的用户友好性变得至关重要,这有助于降低用户的操作成本。本文提出了一种面向农业测控领域的自然语言接口(agricultural measurement and control natural language interface,AMC-NLI),旨在改进农业测控平台的用户体验。通过BERT-BiLSTM-ATT-CRF-OPO(bidirectional encoder representations from transformers-bi-directional long shortterm memory-attention-conditional random field)的语义解析模型,识别并提取农业指令中的实体,并进行操作-地点-对象三元组语句(operate-place-object,OPO)的槽填充。使得用户的自然语言输入能够被转化为结构化的三元组语句,实现用户输入的指令转换为相应的参数,并通过物联网网关发送到相应的设备。试验结果表明在AMC-NLI农业测控指令交互方面,该模型表现出色,准确率,精确率、召回率,F值和平均最大响应时间分别达到了91.63%、92.77%、92.48%、91.74%和2.45 s,为农业信息化管控提供了更为便捷的互动方式。
基金supported by the National Natural Science Foundation of China(61403422,61273102)the Hubei Provincial Natural Science Foundation of China(2015CFA010)+1 种基金the Ⅲ Project(B17040)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)
文摘A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on2D-Gabor, uniform local binary pattern(LBP) operator, and multiclass extreme learning machine(ELM) classifier is presented,which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios,i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on.