To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA...To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.展开更多
The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remai...The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.展开更多
Recent advancements in the Internet of Things IoT and cloud computing have paved the way for mobile Healthcare(mHealthcare)services.A patient within the hospital is monitored by several devices.Moreover,upon leaving t...Recent advancements in the Internet of Things IoT and cloud computing have paved the way for mobile Healthcare(mHealthcare)services.A patient within the hospital is monitored by several devices.Moreover,upon leaving the hospital,the patient can be remotely monitored whether directly using body wearable sensors or using a smartphone equipped with sensors to monitor different user-health parameters.This raises potential challenges for intelligent monitoring of patient's health.In this paper,an improved architecture for smart mHealthcare is proposed that is supported by HCI design principles.The HCI also provides the support for the User-Centric Design(UCD)for smart mHealthcare models.Furthermore,the HCI along with IoT's(Internet of Things)5-layered architecture has the potential of improving User Experience(UX)in mHealthcare design and help saving lives.The intelligent mHealthcare system is supported by the IoT sensing and communication layers and health care providers are supported by the application layer for the medical,behavioral,and health-related information.Health care providers and users are further supported by an intelligent layer performing critical situation assessment and performing a multi-modal communication using an intelligent assistant.The HCI design focuses on the ease-of-use,including user experience and safety,alarms,and error-resistant displays of the end-user,and improves user's experience and user satisfaction.展开更多
Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide...Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.展开更多
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov...Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.展开更多
A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In thi...A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.展开更多
In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin(DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode(Pt/MWC...In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin(DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode(Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V(vs. Ag/Ag Cl) in Britton Robinson(B-R) buffer(p H 4.0, 0.1 M). The electrochemical parameters including p H, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05–4.0 μg/m L with the detection limit of 0.002 μg/m L. The number of electron transfers(n) and electron transfer-coefficient(α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of DOX in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant(K_b) of 1.12×10~5L/mol.展开更多
Objective: To study the disruption of co- localization of human Daxx(hDaxx) with promyelocytic leukemia protein(PML) at the PML oncogenic domains (PODs) by the interaction of hDaxx with adenovirus(Ad) 12 E1B 55 Kiloda...Objective: To study the disruption of co- localization of human Daxx(hDaxx) with promyelocytic leukemia protein(PML) at the PML oncogenic domains (PODs) by the interaction of hDaxx with adenovirus(Ad) 12 E1B 55 Kilodalton Oncoprotein (Ad12 E1B 55kD). Methods: The direct binding reaction of hDaxx and Ad12 E1B 55kD was analyzed by coimmunoprecipitation and Western blotting in vivo or in vitro. The interaction of hDaxx with Ad12 E1B 55kD was studied using yeast two-hybrid assay. Results: hDaxx bounded directly to Ad12 E1B 55kD in vivo and in vitro. hDaxx interacted with full length Ad12 E1B 55kD. Conclusion: Transcriptional regulator hDaxx directly binds to and interacts with Ad12 E1B 55kD.展开更多
A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in h...A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in health and illnesses.Any biotic and abiotic component ensuring a balanced host-microbiota interaction are potential microbiome therapeutic agents to overcome human diseases.Plant metabolites are continually being used to treat various illnesses.These metabolites target the host’s metabolic machinery and host-gut microbiota interactions to overcome human diseases.Despite the paramount therapeutic significance of the factors affecting host-microbiota interactions,a comprehensive overview of the modulatory role of plant-derived metabolites in host-microbiota interactions is lacking.The current review puts an effort into comprehending the role of medicinal plants in gut microbiota modulation to mitigate various human illnesses.It would develop a holistic understanding of hostmicrobiota interactions and the role of effectors in health and diseases.展开更多
In the new era of technology,daily human activities are becoming more challenging in terms of monitoring complex scenes and backgrounds.To understand the scenes and activities from human life logs,human-object interac...In the new era of technology,daily human activities are becoming more challenging in terms of monitoring complex scenes and backgrounds.To understand the scenes and activities from human life logs,human-object interaction(HOI)is important in terms of visual relationship detection and human pose estimation.Activities understanding and interaction recognition between human and object along with the pose estimation and interaction modeling have been explained.Some existing algorithms and feature extraction procedures are complicated including accurate detection of rare human postures,occluded regions,and unsatisfactory detection of objects,especially small-sized objects.The existing HOI detection techniques are instancecentric(object-based)where interaction is predicted between all the pairs.Such estimation depends on appearance features and spatial information.Therefore,we propose a novel approach to demonstrate that the appearance features alone are not sufficient to predict the HOI.Furthermore,we detect the human body parts by using the Gaussian Matric Model(GMM)followed by object detection using YOLO.We predict the interaction points which directly classify the interaction and pair them with densely predicted HOI vectors by using the interaction algorithm.The interactions are linked with the human and object to predict the actions.The experiments have been performed on two benchmark HOI datasets demonstrating the proposed approach.展开更多
In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on t...In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on the passive Radio-Frequency IDentification(RFID)technology to precisely track the pose of a handheld controller,and then transfer the pose information to navigate the UAV.A prototype of the handheld controller is created by attaching three or more Ultra High Frequency(UHF)RFID tags to a board.A Commercial Off-The-Shelf(COTS)RFID reader with multiple antennas is deployed to collect the observations of the tags.First,the precise positions of all the tags can be obtained by our proposed method,which leverages a Bayesian filter and Channel State Information(CSI)phase measurements collected from the RFID reader.Second,we introduce a Singular Value Decomposition(SVD)based approach to obtain a 6-DoF(Degrees of Freedom)pose of the controller from estimated positions of the tags.Furthermore,the pose of the controller can be precisely tracked in a real-time manner,while the user moves the controller.Finally,control commands will be generated from the controller's pose and sent to the UAV for navigation.The performance of the RFHUI is evaluated by several experiments.The results show that it provides precise poses with 0.045m mean error in position and 2.5∘mean error in orientation for the controller,and enables the controller to precisely and intuitively navigate the UAV in an indoor environment.展开更多
Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Inte...Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Interactions by humans may be neutral,positive or negative in nature.Regular pleasant contact with humans may result in desirable alterations in the physiology,behaviour,health and productivity of farm animals.On the contrary,animals that were subjected to aversive human contact were highly fearful of humans and their growth and reproductive performance could be compromised.Farm animals are particularly sensitive to human stimulation that occurs early in life,while many systems of the animals are still developing.This may have long-lasting impact and could possibly modify their genetic potential.The question as to how human contact can have a positive impact on responses to stressors,and productivity is not well understood.Recent work in our laboratory suggested that pleasant human contact may alter ability to tolerate various stressors through enhanced heat shock protein(hsp) 70 expression.The induction of hsp is often associated with increased tolerance to environmental stressors and disease resistance in animals.The attitude and consequent behaviour of stockpeople affect the animals' fear of human which eventually influence animals' productivity and welfare.Other than attitude and behaviour,technical skills,knowledge,job motivation,commitment and job satisfaction are prerequisites for high job performance.展开更多
A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize huma...A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on2D-Gabor, uniform local binary pattern(LBP) operator, and multiclass extreme learning machine(ELM) classifier is presented,which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios,i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on.展开更多
With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much att...With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much attention to heaRthcare robots and rehabilitation robots. To get natural and harmonious communication between the user and a service robot, the information perception/feedback ability, and interaction ability for service robots become more important in many key issues.展开更多
This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion b...This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.展开更多
A more natural way for non-expert users to express their tasks in an open-ended set is to use natural language. In this case,a human-centered intelligent agent/robot is required to be able to understand and generate p...A more natural way for non-expert users to express their tasks in an open-ended set is to use natural language. In this case,a human-centered intelligent agent/robot is required to be able to understand and generate plans for these naturally expressed tasks. For this purpose, it is a good way to enhance intelligent robot's abilities by utilizing open knowledge extracted from the web, instead of hand-coded knowledge. A key challenge of utilizing open knowledge lies in the semantic interpretation of the open knowledge organized in multiple modes, which can be unstructured or semi-structured, before one can use it.Previous approaches used a limited lexicon to employ combinatory categorial grammar(CCG) as the underlying formalism for semantic parsing over sentences. Here, we propose a more effective learning method to interpret semi-structured user instructions. Moreover, we present a new heuristic method to recover missing semantic information from the context of an instruction. Experiments showed that the proposed approach renders significant performance improvement compared to the baseline methods and the recovering method is promising.展开更多
Objective To definite the interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the establishment and maintenance of the tumor vascular system and the tumor hematogenous ...Objective To definite the interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the establishment and maintenance of the tumor vascular system and the tumor hematogenous metastasis.Methods We prepared the conditioned mediums of each cell so as to study the effect of the conditioned medium on itself or others by MTT colorimetry. The comprehensive effect of interactions between two cells was determined by stratified transfilter co culture or direct contact co culture.Results The conditioned medium of human gastric carcinoma cell can stimulate the proliferation of the human vascular endothelial cell, but the CM of HVEC can inhibit the growth of HGCC. Both kinds of cells can inhibit the growth of itself. The ultimate comprehensive effect of the interactions between two kinds of cells was increase of total cell numbers.Conclusion There exist the complicated interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the tumor angiogenesis and the tumor hematogenous metastasis. The ultimate comprehensive effect of the interactions is increase of total cells numbers and tumor volume.展开更多
The interaction between dehydroeburicoic acid (DeEA), a triterpene purified from medicinal fungi and the major transport protein, human serum albumin (HSA), were systematically studied by fluorescence spectroscopy, sy...The interaction between dehydroeburicoic acid (DeEA), a triterpene purified from medicinal fungi and the major transport protein, human serum albumin (HSA), were systematically studied by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy and molecular docking approach under simulated physiological conditions. The intrinsic fluorescence of HSA was quenched through the combination of static and dynamic quenching mechanism. DeEA cannot be stored and carried by HSA in the body at higher temperature. The hydrogen bonding, hydrophobic force and van der Waals force were major acting forces. The site II was the major binding site. The energy transfer could occur with high probability and the binding distance was 3.29 nm. The binding process slightly changed the conformation and microenvironment of HSA. The DeEA molecule entered the hydrophobic cleft of HSA and formed the hydrogen bonding with Glu-492 and Lys-545.展开更多
Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has at...Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has attractedmany researchers to this field. Inspired by the existing recognition systems,this paper proposes a new and efficient human-object interaction recognition(HOIR) model which is based on modeling human pose and scene featureinformation. There are different aspects involved in an interaction, includingthe humans, the objects, the various body parts of the human, and the backgroundscene. Themain objectives of this research include critically examiningthe importance of all these elements in determining the interaction, estimatinghuman pose through image foresting transform (IFT), and detecting the performedinteractions based on an optimizedmulti-feature vector. The proposedmethodology has six main phases. The first phase involves preprocessing theimages. During preprocessing stages, the videos are converted into imageframes. Then their contrast is adjusted, and noise is removed. In the secondphase, the human-object pair is detected and extracted from each image frame.The third phase involves the identification of key body parts of the detectedhumans using IFT. The fourth phase relates to three different kinds of featureextraction techniques. Then these features are combined and optimized duringthe fifth phase. The optimized vector is used to classify the interactions in thelast phase. TheMSRDaily Activity 3D dataset has been used to test this modeland to prove its efficiency. The proposed system obtains an average accuracyof 91.7% on this dataset.展开更多
Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precise...Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precisely.This research focuses on recognizing human interaction behaviors using a static image,which is challenging due to the complexity of diverse actions.The overall purpose of this study is to develop a robust and accurate system for human interaction recognition.This research presents a novel image-based human interaction recognition method using a Hidden Markov Model(HMM).The technique employs hue,saturation,and intensity(HSI)color transformation to enhance colors in video frames,making them more vibrant and visually appealing,especially in low-contrast or washed-out scenes.Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method.Feature extraction uses the features from Accelerated Segment Test(FAST),Oriented FAST,and Rotated BRIEF(ORB)techniques.The application of Quadratic Discriminant Analysis(QDA)for feature fusion and discrimination enables high-dimensional data to be effectively analyzed,thus further enhancing the classification process.It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities.The impressive accuracy rates of 93%and 94.6%achieved in the BIT-Interaction and UT-Interaction datasets respectively,highlight the success and reliability of the proposed technique.The proposed approach addresses challenges in various domains by focusing on frame improvement,silhouette and feature extraction,feature fusion,and HMM classification.This enhances data quality,accuracy,adaptability,reliability,and reduction of errors.展开更多
基金supported by the National Key Research and Development Program of China(2021YFB1600601)the Joint Funds of the National Natural Science Foundation of China and the Civil Aviation Administration of China(U1933106)+2 种基金the Scientific Research Project of Tianjin Educational Committee(2019KJ134)the Natural Science Foundation of TianjinIntelligent Civil Aviation Program(21JCQNJ C00900)。
文摘To solve the problem of risk identification and quantitative assessment for human-computer interaction(HCI)in complex avionics systems,an HCI safety analysis framework based on system-theoretical process analysis(STPA)and cognitive reliability and error analysis method(CREAM)is proposed.STPACREAM can identify unsafe control actions and find the causal path during the interaction of avionics systems and pilot with the help of formal verification tools automatically.The common performance conditions(CPC)of avionics systems in the aviation environment is established and a quantitative analysis of human failure is carried out.Taking the head-up display(HUD)system interaction process as an example,a case analysis is carried out,the layered safety control structure and formal model of the HUD interaction process are established.For the interactive behavior“Pilots approaching with HUD”,four unsafe control actions and35 causal scenarios are identified and the impact of common performance conditions at different levels on the pilot decision model are analyzed.The results show that HUD's HCI level gradually improves as the scores of CPC increase,and the quality of crew member cooperation and time sufficiency of the task is the key to its HCI.Through case analysis,it is shown that STPACREAM can quantitatively assess the hazards in HCI and identify the key factors that impact safety.
基金supported by the National Key Research and Development Program of China(2021YFB3901205)National Institute of Natural Hazards,Ministry of Emergency Management of China(2023-JBKY-57)。
文摘The periphery of the Qinghai-Tibet Plateau is renowned for its susceptibility to landslides.However,the northwestern margin of this region,characterised by limited human activities and challenging transportation,remains insufficiently explored concerning landslide occurrence and dispersion.With the planning and construction of the Xinjiang-Tibet Railway,a comprehensive investigation into disastrous landslides in this area is essential for effective disaster preparedness and mitigation strategies.By using the human-computer interaction interpretation approach,the authors established a landslide database encompassing 13003 landslides,collectively spanning an area of 3351.24 km^(2)(36°N-40°N,73°E-78°E).The database incorporates diverse topographical and environmental parameters,including regional elevation,slope angle,slope aspect,distance to faults,distance to roads,distance to rivers,annual precipitation,and stratum.The statistical characteristics of number and area of landslides,landslide number density(LND),and landslide area percentage(LAP)are analyzed.The authors found that a predominant concentration of landslide origins within high slope angle regions,with the highest incidence observed in intervals characterised by average slopes of 20°to 30°,maximum slope angle above 80°,along with orientations towards the north(N),northeast(NE),and southwest(SW).Additionally,elevations above 4.5 km,distance to rivers below 1 km,rainfall between 20-30 mm and 30-40 mm emerge as particularly susceptible to landslide development.The study area’s geological composition primarily comprises Mesozoic and Upper Paleozoic outcrops.Both fault and human engineering activities have different degrees of influence on landslide development.Furthermore,the significance of the landslide database,the relationship between landslide distribution and environmental factors,and the geometric and morphological characteristics of landslides are discussed.The landslide H/L ratios in the study area are mainly concentrated between 0.4 and 0.64.It means the landslides mobility in the region is relatively low,and the authors speculate that landslides in this region more possibly triggered by earthquakes or located in meizoseismal area.
文摘Recent advancements in the Internet of Things IoT and cloud computing have paved the way for mobile Healthcare(mHealthcare)services.A patient within the hospital is monitored by several devices.Moreover,upon leaving the hospital,the patient can be remotely monitored whether directly using body wearable sensors or using a smartphone equipped with sensors to monitor different user-health parameters.This raises potential challenges for intelligent monitoring of patient's health.In this paper,an improved architecture for smart mHealthcare is proposed that is supported by HCI design principles.The HCI also provides the support for the User-Centric Design(UCD)for smart mHealthcare models.Furthermore,the HCI along with IoT's(Internet of Things)5-layered architecture has the potential of improving User Experience(UX)in mHealthcare design and help saving lives.The intelligent mHealthcare system is supported by the IoT sensing and communication layers and health care providers are supported by the application layer for the medical,behavioral,and health-related information.Health care providers and users are further supported by an intelligent layer performing critical situation assessment and performing a multi-modal communication using an intelligent assistant.The HCI design focuses on the ease-of-use,including user experience and safety,alarms,and error-resistant displays of the end-user,and improves user's experience and user satisfaction.
文摘Based on the traditional Human-Computer Interaction method which is mainly touch input system, the way of capturing the movement of people by using cameras is proposed. This is a convenient technique which can provide users more experience. In the article, a new way of detecting moving things is given on the basis of development of the image processing technique. The system architecture decides that the communication should be used between two different applications. After considered, named pipe is selected from many ways of communication to make sure that video is keeping in step with the movement from the analysis of the people moving. According to a large amount of data and principal knowledge, thinking of the need of actual project, a detailed system design and realization is finished. The system consists of three important modules: detecting of the people's movement, information transition between applications and video showing in step with people's movement. The article introduces the idea of each module and technique.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00218176)and the Soonchunhyang University Research Fund.
文摘Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture.
文摘A complete characterization of the behavior in human-robot interactions(HRI) includes both: the behavioral dynamics and the control laws that characterize how the behavior is regulated with the perception data. In this way, this work proposes a leader-follower coordinate control based on an impedance control that allows to establish a dynamic relation between social forces and motion error. For this, a scheme is presented to identify the impedance based on fictitious social forces, which are described by distance-based potential fields.As part of the validation procedure, we present an experimental comparison to select the better of two different fictitious force structures. The criteria are determined by two qualities: least impedance errors during the validation procedure and least parameter variance during the recursive estimation procedure.Finally, with the best fictitious force and its identified impedance,an impedance control is designed for a mobile robot Pioneer 3AT,which is programmed to follow a human in a structured scenario.According to results, and under the hypothesis that moving like humans will be acceptable by humans, it is believed that the proposed control improves the social acceptance of the robot for this kind of interaction.
基金the research council of Gachsaran Branch, Islamic Azad University, Iran for supporting this project under Grant no. 25518
文摘In this work, an electrochemical sensor was fabricated for determination of an anthracycline, doxorubicin(DOX) as a chemotherapy drug in plasma based on multi-walled carbon nanotubes modified platinum electrode(Pt/MWCNTs). DOX was effectively accumulated on the surface of modified electrode and generated a pair of redox peaks at around 0.522 and 0.647 V(vs. Ag/Ag Cl) in Britton Robinson(B-R) buffer(p H 4.0, 0.1 M). The electrochemical parameters including p H, type of buffer, accumulation time, amount of modifier and scan rate were optimized. Under the optimized conditions, there was a linear correlation between cathodic peak current and concentration of DOX in the range of 0.05–4.0 μg/m L with the detection limit of 0.002 μg/m L. The number of electron transfers(n) and electron transfer-coefficient(α) were estimated as 2.0 and 0.25, respectively. The constructed sensor displayed excellent precision, sensitivity, repeatability and selectivity in the determination of DOX in plasma. Moreover, cyclic voltammetry studies of DOX in the presence of DNA showed an intercalation mechanism with binding constant(K_b) of 1.12×10~5L/mol.
基金This work was supported by grants from Ministry of Education of P.R. China (No. 2000-65).
文摘Objective: To study the disruption of co- localization of human Daxx(hDaxx) with promyelocytic leukemia protein(PML) at the PML oncogenic domains (PODs) by the interaction of hDaxx with adenovirus(Ad) 12 E1B 55 Kilodalton Oncoprotein (Ad12 E1B 55kD). Methods: The direct binding reaction of hDaxx and Ad12 E1B 55kD was analyzed by coimmunoprecipitation and Western blotting in vivo or in vitro. The interaction of hDaxx with Ad12 E1B 55kD was studied using yeast two-hybrid assay. Results: hDaxx bounded directly to Ad12 E1B 55kD in vivo and in vitro. hDaxx interacted with full length Ad12 E1B 55kD. Conclusion: Transcriptional regulator hDaxx directly binds to and interacts with Ad12 E1B 55kD.
基金financial support under Maharshi Dayanand University Rohtak for a Post-Seed Research Grant(DRD/23/75)sanctioned to Dr.NS Chauhan.
文摘A diverse array of microbes in and on the human body constitute the microbiota.These micro-residents continuously interact with the human host through the language of metabolites to dictate the host’s physiology in health and illnesses.Any biotic and abiotic component ensuring a balanced host-microbiota interaction are potential microbiome therapeutic agents to overcome human diseases.Plant metabolites are continually being used to treat various illnesses.These metabolites target the host’s metabolic machinery and host-gut microbiota interactions to overcome human diseases.Despite the paramount therapeutic significance of the factors affecting host-microbiota interactions,a comprehensive overview of the modulatory role of plant-derived metabolites in host-microbiota interactions is lacking.The current review puts an effort into comprehending the role of medicinal plants in gut microbiota modulation to mitigate various human illnesses.It would develop a holistic understanding of hostmicrobiota interactions and the role of effectors in health and diseases.
基金supported by Priority Research Centers Program through NRF funded by MEST(2018R1A6A1A03024003)the Grand Information Technology Research Center support program IITP-2020-2020-0-01612 supervised by the IITP by MSIT,Korea.
文摘In the new era of technology,daily human activities are becoming more challenging in terms of monitoring complex scenes and backgrounds.To understand the scenes and activities from human life logs,human-object interaction(HOI)is important in terms of visual relationship detection and human pose estimation.Activities understanding and interaction recognition between human and object along with the pose estimation and interaction modeling have been explained.Some existing algorithms and feature extraction procedures are complicated including accurate detection of rare human postures,occluded regions,and unsatisfactory detection of objects,especially small-sized objects.The existing HOI detection techniques are instancecentric(object-based)where interaction is predicted between all the pairs.Such estimation depends on appearance features and spatial information.Therefore,we propose a novel approach to demonstrate that the appearance features alone are not sufficient to predict the HOI.Furthermore,we detect the human body parts by using the Gaussian Matric Model(GMM)followed by object detection using YOLO.We predict the interaction points which directly classify the interaction and pair them with densely predicted HOI vectors by using the interaction algorithm.The interactions are linked with the human and object to predict the actions.The experiments have been performed on two benchmark HOI datasets demonstrating the proposed approach.
文摘In this paper,we present an RFID based human and Unmanned Aerial Vehicle(UAV)Interaction system,termed RFHUI,to provide an intuitive and easy-to-operate method to navigate a UAV in an indoor environment.It relies on the passive Radio-Frequency IDentification(RFID)technology to precisely track the pose of a handheld controller,and then transfer the pose information to navigate the UAV.A prototype of the handheld controller is created by attaching three or more Ultra High Frequency(UHF)RFID tags to a board.A Commercial Off-The-Shelf(COTS)RFID reader with multiple antennas is deployed to collect the observations of the tags.First,the precise positions of all the tags can be obtained by our proposed method,which leverages a Bayesian filter and Channel State Information(CSI)phase measurements collected from the RFID reader.Second,we introduce a Singular Value Decomposition(SVD)based approach to obtain a 6-DoF(Degrees of Freedom)pose of the controller from estimated positions of the tags.Furthermore,the pose of the controller can be precisely tracked in a real-time manner,while the user moves the controller.Finally,control commands will be generated from the controller's pose and sent to the UAV for navigation.The performance of the RFHUI is evaluated by several experiments.The results show that it provides precise poses with 0.045m mean error in position and 2.5∘mean error in orientation for the controller,and enables the controller to precisely and intuitively navigate the UAV in an indoor environment.
文摘Humans and animals are in regular and at times close contact in modern intensive farming systems.The quality of human-animal interactions can have a profound impact on the productivity and welfare of farm animals.Interactions by humans may be neutral,positive or negative in nature.Regular pleasant contact with humans may result in desirable alterations in the physiology,behaviour,health and productivity of farm animals.On the contrary,animals that were subjected to aversive human contact were highly fearful of humans and their growth and reproductive performance could be compromised.Farm animals are particularly sensitive to human stimulation that occurs early in life,while many systems of the animals are still developing.This may have long-lasting impact and could possibly modify their genetic potential.The question as to how human contact can have a positive impact on responses to stressors,and productivity is not well understood.Recent work in our laboratory suggested that pleasant human contact may alter ability to tolerate various stressors through enhanced heat shock protein(hsp) 70 expression.The induction of hsp is often associated with increased tolerance to environmental stressors and disease resistance in animals.The attitude and consequent behaviour of stockpeople affect the animals' fear of human which eventually influence animals' productivity and welfare.Other than attitude and behaviour,technical skills,knowledge,job motivation,commitment and job satisfaction are prerequisites for high job performance.
基金supported by the National Natural Science Foundation of China(61403422,61273102)the Hubei Provincial Natural Science Foundation of China(2015CFA010)+1 种基金the Ⅲ Project(B17040)the Fundamental Research Funds for National University,China University of Geosciences(Wuhan)
文摘A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on2D-Gabor, uniform local binary pattern(LBP) operator, and multiclass extreme learning machine(ELM) classifier is presented,which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios,i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on.
文摘With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much attention to heaRthcare robots and rehabilitation robots. To get natural and harmonious communication between the user and a service robot, the information perception/feedback ability, and interaction ability for service robots become more important in many key issues.
文摘This paper proposes a method to recognize human-object interactions by modeling context between human actions and interacted objects.Human-object interaction recognition is a challenging task due to severe occlusion between human and objects during the interacting process.Since that human actions and interacted objects provide strong context information,i.e.some actions are usually related to some specific objects,the accuracy of recognition is significantly improved for both of them.Through the proposed method,both global and local temporal features from skeleton sequences are extracted to model human actions.In the meantime,kernel features are utilized to describe interacted objects.Finally,all possible solutions from actions and objects are optimized by modeling the context between them.The results of experiments demonstrate the effectiveness of our method.
基金supported by the National Natural Science Foundation of China(61175057)the USTC Key-Direction Research Fund(WK0110000028)
文摘A more natural way for non-expert users to express their tasks in an open-ended set is to use natural language. In this case,a human-centered intelligent agent/robot is required to be able to understand and generate plans for these naturally expressed tasks. For this purpose, it is a good way to enhance intelligent robot's abilities by utilizing open knowledge extracted from the web, instead of hand-coded knowledge. A key challenge of utilizing open knowledge lies in the semantic interpretation of the open knowledge organized in multiple modes, which can be unstructured or semi-structured, before one can use it.Previous approaches used a limited lexicon to employ combinatory categorial grammar(CCG) as the underlying formalism for semantic parsing over sentences. Here, we propose a more effective learning method to interpret semi-structured user instructions. Moreover, we present a new heuristic method to recover missing semantic information from the context of an instruction. Experiments showed that the proposed approach renders significant performance improvement compared to the baseline methods and the recovering method is promising.
文摘Objective To definite the interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the establishment and maintenance of the tumor vascular system and the tumor hematogenous metastasis.Methods We prepared the conditioned mediums of each cell so as to study the effect of the conditioned medium on itself or others by MTT colorimetry. The comprehensive effect of interactions between two cells was determined by stratified transfilter co culture or direct contact co culture.Results The conditioned medium of human gastric carcinoma cell can stimulate the proliferation of the human vascular endothelial cell, but the CM of HVEC can inhibit the growth of HGCC. Both kinds of cells can inhibit the growth of itself. The ultimate comprehensive effect of the interactions between two kinds of cells was increase of total cell numbers.Conclusion There exist the complicated interactions between the human gastric carcinoma cell and the human vascular endothelial cell during the tumor angiogenesis and the tumor hematogenous metastasis. The ultimate comprehensive effect of the interactions is increase of total cells numbers and tumor volume.
文摘The interaction between dehydroeburicoic acid (DeEA), a triterpene purified from medicinal fungi and the major transport protein, human serum albumin (HSA), were systematically studied by fluorescence spectroscopy, synchronous fluorescence spectroscopy, three-dimensional fluorescence spectroscopy and molecular docking approach under simulated physiological conditions. The intrinsic fluorescence of HSA was quenched through the combination of static and dynamic quenching mechanism. DeEA cannot be stored and carried by HSA in the body at higher temperature. The hydrogen bonding, hydrophobic force and van der Waals force were major acting forces. The site II was the major binding site. The energy transfer could occur with high probability and the binding distance was 3.29 nm. The binding process slightly changed the conformation and microenvironment of HSA. The DeEA molecule entered the hydrophobic cleft of HSA and formed the hydrogen bonding with Glu-492 and Lys-545.
基金This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ITRC(Information Technology Research Center)support program(IITP-2023-2018-0-01426)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)This work has also been supported by PrincessNourah bint Abdulrahman UniversityResearchers Supporting Project Number(PNURSP2022R239),Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.Alsothis work was partially supported by the Taif University Researchers Supporting Project Number(TURSP-2020/115),Taif University,Taif,Saudi Arabia.
文摘Identifying human actions and interactions finds its use in manyareas, such as security, surveillance, assisted living, patient monitoring, rehabilitation,sports, and e-learning. This wide range of applications has attractedmany researchers to this field. Inspired by the existing recognition systems,this paper proposes a new and efficient human-object interaction recognition(HOIR) model which is based on modeling human pose and scene featureinformation. There are different aspects involved in an interaction, includingthe humans, the objects, the various body parts of the human, and the backgroundscene. Themain objectives of this research include critically examiningthe importance of all these elements in determining the interaction, estimatinghuman pose through image foresting transform (IFT), and detecting the performedinteractions based on an optimizedmulti-feature vector. The proposedmethodology has six main phases. The first phase involves preprocessing theimages. During preprocessing stages, the videos are converted into imageframes. Then their contrast is adjusted, and noise is removed. In the secondphase, the human-object pair is detected and extracted from each image frame.The third phase involves the identification of key body parts of the detectedhumans using IFT. The fourth phase relates to three different kinds of featureextraction techniques. Then these features are combined and optimized duringthe fifth phase. The optimized vector is used to classify the interactions in thelast phase. TheMSRDaily Activity 3D dataset has been used to test this modeland to prove its efficiency. The proposed system obtains an average accuracyof 91.7% on this dataset.
基金funding this work under the Research Group Funding Program Grant Code(NU/RG/SERC/12/6)supported via funding from Prince Satam bin Abdulaziz University Project Number(PSAU/2023/R/1444)+1 种基金Princess Nourah bint Abdulrahman University Researchers Supporting Project Number(PNURSP2023R348)Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,and this work was also supported by the Ministry of Science and ICT(MSIT),South Korea,through the ICT Creative Consilience Program supervised by the Institute for Information and Communications Technology Planning and Evaluation(IITP)under Grant IITP-2023-2020-0-01821.
文摘Human-human interaction recognition is crucial in computer vision fields like surveillance,human-computer interaction,and social robotics.It enhances systems’ability to interpret and respond to human behavior precisely.This research focuses on recognizing human interaction behaviors using a static image,which is challenging due to the complexity of diverse actions.The overall purpose of this study is to develop a robust and accurate system for human interaction recognition.This research presents a novel image-based human interaction recognition method using a Hidden Markov Model(HMM).The technique employs hue,saturation,and intensity(HSI)color transformation to enhance colors in video frames,making them more vibrant and visually appealing,especially in low-contrast or washed-out scenes.Gaussian filters reduce noise and smooth imperfections followed by silhouette extraction using a statistical method.Feature extraction uses the features from Accelerated Segment Test(FAST),Oriented FAST,and Rotated BRIEF(ORB)techniques.The application of Quadratic Discriminant Analysis(QDA)for feature fusion and discrimination enables high-dimensional data to be effectively analyzed,thus further enhancing the classification process.It ensures that the final features loaded into the HMM classifier accurately represent the relevant human activities.The impressive accuracy rates of 93%and 94.6%achieved in the BIT-Interaction and UT-Interaction datasets respectively,highlight the success and reliability of the proposed technique.The proposed approach addresses challenges in various domains by focusing on frame improvement,silhouette and feature extraction,feature fusion,and HMM classification.This enhances data quality,accuracy,adaptability,reliability,and reduction of errors.