Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study intr...Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.展开更多
Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding s...Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.展开更多
RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still...RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.展开更多
The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Rec...The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)efforts.However,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems.This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity inference.Unlike traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for analysis.It emphasizes the low-frequency components by calculating their energy spectral density values.Subsequently,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational costs.Notably,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone architecture.The computational feasibility and data sensitivity of the proposed scheme are thoroughly examined.Impressively,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,respectively.Concurrently,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%.展开更多
Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the de...Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the development of transborder watershed.In this study,we used global historical land cover data,the hemeroby index model,and synthesized major historical events to analyze how human activity intensity changed in the Heilongjiang River(Amur River in Russia)watershed(HLRW).The results showed that there was a strong spatial heterogeneity in the variation of human activity intensity in the HLRW over the past century(1900-2016).On the Chinese side,the human activity intensity change shifted from the plain areas for agricultural reclamation to the mountainous areas for timber extraction.On the Russian side,human activity intensity changes mostly concentrated along the Trans-Siberian Railway and the Baikal-Amur Mainline.Localized variation of human activity intensity tended to respond to regional events while regionalized variation tends to reflect national policy change or broad international events.The similarities and differences between China and Russia in policies and positions in international events resulted in synchronous and asynchronous changes in human activity intensity.Meanwhile,policy shifts were often confined by the natural features of the watershed.These results reveal the historical origins and fundamental connotations of watershed development and contribute to formulating regional management policies that coordinate population,eco-nomic,social,and environmental activities.展开更多
Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recogn...Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recognizing activities for specific users, which does not consider the individual differences among users and cannot adapt to new users. In order to improve the generalization ability of HAR model, this paper proposes a novel method that combines the theories in transfer learning and active learning to mitigate the cross-subject issue, so that it can enable lower limb exoskeleton robots being used in more complex scenarios. First, a neural network based on convolutional neural networks (CNN) is designed, which can extract temporal and spatial features from sensor signals collected from different parts of human body. It can recognize human activities with high accuracy after trained by labeled data. Second, in order to improve the cross-subject adaptation ability of the pre-trained model, we design a cross-subject HAR algorithm based on sparse interrogation and label propagation. Through leave-one-subject-out validation on two widely-used public datasets with existing methods, our method achieves average accuracies of 91.77% on DSAD and 80.97% on PAMAP2, respectively. The experimental results demonstrate the potential of implementing cross-subject HAR for lower limb exoskeleton robots.展开更多
Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,...Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,healthcare,human-robot interaction,and entertainment.Since wearable sensor-based HAR system includes in-built sensors,human activities can be categorized based on sensor values.Further,it can also be employed in other applications such as gait diagnosis,observation of children/adult’s cognitive nature,stroke-patient hospital direction,Epilepsy and Parkinson’s disease examination,etc.Recently-developed Artificial Intelligence(AI)techniques,especially Deep Learning(DL)models can be deployed to accomplish effective outcomes on HAR process.With this motivation,the current research paper focuses on designing Intelligent Hyperparameter Tuned Deep Learning-based HAR(IHPTDL-HAR)technique in healthcare environment.The proposed IHPTDL-HAR technique aims at recogniz-ing the human actions in healthcare environment and helps the patients in mana-ging their healthcare service.In addition,the presented model makes use of Hierarchical Clustering(HC)-based outlier detection technique to remove the out-liers.IHPTDL-HAR technique incorporates DL-based Deep Belief Network(DBN)model to recognize the activities of users.Moreover,Harris Hawks Opti-mization(HHO)algorithm is used for hyperparameter tuning of DBN model.Finally,a comprehensive experimental analysis was conducted upon benchmark dataset and the results were examined under different aspects.The experimental results demonstrate that the proposed IHPTDL-HAR technique is a superior per-former compared to other recent techniques under different measures.展开更多
The purpose of Human Activities Recognition(HAR)is to recognize human activities with sensors like accelerometers and gyroscopes.The normal research strategy is to obtain better HAR results by finding more efficient e...The purpose of Human Activities Recognition(HAR)is to recognize human activities with sensors like accelerometers and gyroscopes.The normal research strategy is to obtain better HAR results by finding more efficient eigenvalues and classification algorithms.In this paper,we experimentally validate the HAR process and its various algorithms independently.On the base of which,it is further proposed that,in addition to the necessary eigenvalues and intelligent algorithms,correct prior knowledge is even more critical.The prior knowledge mentioned here mainly refers to the physical understanding of the analyzed object,the sampling process,the sampling data,the HAR algorithm,etc.Thus,a solution is presented under the guidance of right prior knowledge,using Back-Propagation neural networks(BP networks)and simple Convolutional Neural Networks(CNN).The results show that HAR can be achieved with 90%–100%accuracy.Further analysis shows that intelligent algorithms for pattern recognition and classification problems,typically represented by HAR,require correct prior knowledge to work effectively.展开更多
With the rapid advancement of wearable devices,Human Activities Recognition(HAR)based on these devices has emerged as a prominent research field.The objective of this study is to enhance the recognition performance of...With the rapid advancement of wearable devices,Human Activities Recognition(HAR)based on these devices has emerged as a prominent research field.The objective of this study is to enhance the recognition performance of HAR by proposing an LSTM-1DCNN recognition algorithm that utilizes a single triaxial accelerometer.This algorithm comprises two branches:one branch consists of a Long and Short-Term Memory Network(LSTM),while the other parallel branch incorporates a one-dimensional Convolutional Neural Network(1DCNN).The parallel architecture of LSTM-1DCNN initially extracts spatial and temporal features from the accelerometer data separately,which are then concatenated and fed into a fully connected neural network for information fusion.In the LSTM-1DCNN architecture,the 1DCNN branch primarily focuses on extracting spatial features during convolution operations,whereas the LSTM branch mainly captures temporal features.Nine sets of accelerometer data from five publicly available HAR datasets are employed for training and evaluation purposes.The performance of the proposed LSTM-1DCNN model is compared with five other HAR algorithms including Decision Tree,Random Forest,Support Vector Machine,1DCNN,and LSTM on these five public datasets.Experimental results demonstrate that the F1-score achieved by the proposed LSTM-1DCNN ranges from 90.36%to 99.68%,with a mean value of 96.22%and standard deviation of 0.03 across all evaluated metrics on these five public datasets-outperforming other existing HAR algorithms significantly in terms of evaluation metrics used in this study.Finally the proposed LSTM-1DCNN is validated in real-world applications by collecting acceleration data of seven human activities for training and testing purposes.Subsequently,the trained HAR algorithm is deployed on Android phones to evaluate its performance.Experimental results demonstrate that the proposed LSTM-1DCNN algorithm achieves an impressive F1-score of 97.67%on our self-built dataset.In conclusion,the fusion of temporal and spatial information in the measured data contributes to the excellent HAR performance and robustness exhibited by the proposed 1DCNN-LSTM architecture.展开更多
Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments...Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments and anthropometric differences between individuals make it harder to recognize actions.This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications.It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network.Moreover,the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information.Six state-of-the-art pre-trained models are exploited to find the best model for spatial feature extraction.For temporal sequence,this study uses dense optical flow following the two-stream ConvNet and Bidirectional Long Short TermMemory(BiLSTM)to capture longtermdependencies.Two state-of-the-art datasets,UCF101 and HMDB51,are used for evaluation purposes.In addition,seven state-of-the-art optimizers are used to fine-tune the proposed network parameters.Furthermore,this study utilizes an ensemble mechanism to aggregate spatial-temporal features using a four-stream Convolutional Neural Network(CNN),where two streams use RGB data.In contrast,the other uses optical flow images.Finally,the proposed ensemble approach using max hard voting outperforms state-ofthe-art methods with 96.30%and 90.07%accuracies on the UCF101 and HMDB51 datasets.展开更多
Investigating the spatiotemporal variation of human activity intensity and its determinants is a crucial basis for further revealing the mechanism of human-environment interaction and optimizing the human development ...Investigating the spatiotemporal variation of human activity intensity and its determinants is a crucial basis for further revealing the mechanism of human-environment interaction and optimizing the human development mode.In this study,the human activity intensity on the Qinghai-Tibet Plateau(QTP)from 1990 to 2020 was measured based on the quantitative model of land use data and the actual regional background,and the under-lying natural and socioeconomic determinants were investigated using spatial econometric methods.The results demonstrate that(1)the human activity intensity in QTP has increased by 11.96%,and there are differences in different spatial scales;the areas with high human activity intensity are distributed in the Hehuang Valley where Xining City and its surrounding areas are located,as well as the One-River and Two-River Area where Lhasa City and surrounding areas are located.(2)Human activity intensity has significant positive spatial spillover,suggesting that local changes will cause changes in the same direction in adjacent areas.(3)The human activ-ity intensity in QTP is affected by various determinants.Concerning socioeconomic factors,the economic level has no significant impact on the human activity intensity in QTP,which differs from the general regional law.Both urbanization and traffic conditions have a significant positive effect,and the impact intensity continues to increase.Concerning natural factors,topographic relief has a significant positive effect;the impacts of temper-ature and vegetation coverage have changed from insignificant to a significant positive effect;the impacts of precipitation and river network density have not been verified;there is no linear relationship between altitude and human activity intensity in the entire QTP,while it exists in local regions.Finally,this study proposes three policy implications for the realization of a more harmonious human-environment relationship in QTP.展开更多
Human Action Recognition(HAR)and pose estimation from videos have gained significant attention among research communities due to its applica-tion in several areas namely intelligent surveillance,human robot interaction...Human Action Recognition(HAR)and pose estimation from videos have gained significant attention among research communities due to its applica-tion in several areas namely intelligent surveillance,human robot interaction,robot vision,etc.Though considerable improvements have been made in recent days,design of an effective and accurate action recognition model is yet a difficult process owing to the existence of different obstacles such as variations in camera angle,occlusion,background,movement speed,and so on.From the literature,it is observed that hard to deal with the temporal dimension in the action recognition process.Convolutional neural network(CNN)models could be used widely to solve this.With this motivation,this study designs a novel key point extraction with deep convolutional neural networks based pose estimation(KPE-DCNN)model for activity recognition.The KPE-DCNN technique initially converts the input video into a sequence of frames followed by a three stage process namely key point extraction,hyperparameter tuning,and pose estimation.In the keypoint extraction process an OpenPose model is designed to compute the accurate key-points in the human pose.Then,an optimal DCNN model is developed to classify the human activities label based on the extracted key points.For improving the training process of the DCNN technique,RMSProp optimizer is used to optimally adjust the hyperparameters such as learning rate,batch size,and epoch count.The experimental results tested using benchmark dataset like UCF sports dataset showed that KPE-DCNN technique is able to achieve good results compared with benchmark algorithms like CNN,DBN,SVM,STAL,T-CNN and so on.展开更多
The influences of human activity on regional climate over China have been widely reported and drawn great attention from both the scientific community and governments.This paper reviews the evidence of the anthropogen...The influences of human activity on regional climate over China have been widely reported and drawn great attention from both the scientific community and governments.This paper reviews the evidence of the anthropogenic influence on regional climate over China from the perspectives of surface air temperature(SAT),precipitation,droughts,and surface wind speed,based on studies published since 2018.The reviewed evidence indicates that human activities,including greenhouse gas and anthropogenic aerosol emissions,land use and cover change,urbanization,and anthropogenic heat release,have contributed to changes in the SAT trend and the likelihood of regional record-breaking extreme high/low temperature events over China.The anthropogenically forced SAT signal can be detected back to the 1870s in the southeastern Tibetan Plateau region.Although the anthropogenic signal of summer precipitation over China is detectable and anthropogenic forcing has contributed to an increased likelihood of regional record-breaking heavy/low precipitation events,the anthropogenic precipitation signal over China is relatively obscure.Moreover,human activities have also contributed to a decline in surface wind speed,weakening of monsoon precipitation,and an increase in the frequency of droughts and compound extreme climate/weather events over China in recent decades.This review can serve as a reference both for further understanding the causes of regional climate changes over China and for sound decision-making on regional climate mitigation and adaptation.Additionally,a few key or challenging scientific issues associated with the human influence on regional climate changes are discussed in the context of future research.展开更多
Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount ...Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount of its real-time uses in real-time applications,namely surveillance by authorities,biometric user identification,and health monitoring of older people.The extensive usage of the Internet of Things(IoT)and wearable sensor devices has made the topic of HAR a vital subject in ubiquitous and mobile computing.The more commonly utilized inference and problemsolving technique in the HAR system have recently been deep learning(DL).The study develops aModifiedWild Horse Optimization withDLAided Symmetric Human Activity Recognition(MWHODL-SHAR)model.The major intention of the MWHODL-SHAR model lies in recognition of symmetric activities,namely jogging,walking,standing,sitting,etc.In the presented MWHODL-SHAR technique,the human activities data is pre-processed in various stages to make it compatible for further processing.A convolution neural network with an attention-based long short-term memory(CNNALSTM)model is applied for activity recognition.The MWHO algorithm is utilized as a hyperparameter tuning strategy to improve the detection rate of the CNN-ALSTM algorithm.The experimental validation of the MWHODL-SHAR technique is simulated using a benchmark dataset.An extensive comparison study revealed the betterment of theMWHODL-SHAR technique over other recent approaches.展开更多
Human-Computer Interaction(HCI)is a sub-area within computer science focused on the study of the communication between people(users)and computers and the evaluation,implementation,and design of user interfaces for com...Human-Computer Interaction(HCI)is a sub-area within computer science focused on the study of the communication between people(users)and computers and the evaluation,implementation,and design of user interfaces for computer systems.HCI has accomplished effective incorporation of the human factors and software engineering of computing systems through the methods and concepts of cognitive science.Usability is an aspect of HCI dedicated to guar-anteeing that human–computer communication is,amongst other things,efficient,effective,and sustaining for the user.Simultaneously,Human activity recognition(HAR)aim is to identify actions from a sequence of observations on the activities of subjects and the environmental conditions.The vision-based HAR study is the basis of several applications involving health care,HCI,and video surveillance.This article develops a Fire Hawk Optimizer with Deep Learning Enabled Activ-ity Recognition(FHODL-AR)on HCI driven usability.In the presented FHODL-AR technique,the input images are investigated for the identification of different human activities.For feature extraction,a modified SqueezeNet model is intro-duced by the inclusion of few bypass connections to the SqueezeNet among Fire modules.Besides,the FHO algorithm is utilized as a hyperparameter optimization algorithm,which in turn boosts the classification performance.To detect and cate-gorize different kinds of activities,probabilistic neural network(PNN)classifier is applied.The experimental validation of the FHODL-AR technique is tested using benchmark datasets,and the outcomes reported the improvements of the FHODL-AR technique over other recent approaches.展开更多
Objective:To construct a secretory eukaryotic expression vector of DSG2 fused with the Fc region of the human IgG,to validate its expression in 293T cells,and to purify the secretory protein with biological activity.M...Objective:To construct a secretory eukaryotic expression vector of DSG2 fused with the Fc region of the human IgG,to validate its expression in 293T cells,and to purify the secretory protein with biological activity.Methods:The DSG2 extracellular domain fragment gene(DSG2ex),was amplified by PCR,and was inserted into the eukaryotic expression plasmid pCMV3-IgG1 to construct the recombinant eukaryotic expression plasmid-pCMV3-DSG2ex-IgG1.The successfully constructed eukaryotic expression plasmid was transfected into 293T cells to express and secrete DSG2 extracellular domain protein.The targeted protein was purified from the cell culture supernatant by Protein A affinity chromatography and confirmed by Western Blotting and ELISA.Results:The pCMV3-DSG2ex-IgG1 eukaryotic expression plasmid was successfully constructed.The highest protein expression level was obtained with 293T cells after 96 h of transfection.The relative molecular mass of the purified product was between 100 and 130 kDa was estimated by SDS-PAGE,which was consistent with the expectation.The yield of the purified protein reached 0.8 mg/ml with a purity over 90%.The purified DSG2 extracellular domain protein with IgG1 tag was recognized by IgG monoclonal antibodies by Western blotting.Moreover,the ELISA results showed that the prepared DSG2 extracellular domain protein had significant binding activity to human type 55 adenovirus Fiber Knob protein(HAdV-55).Conclusion:A simple and efficient method for eukaryotic expression and purification of human soluble DSG2 extracellular domain protein was successfully established,and biologically active DSG2 extracellular domain protein was purified,which laid the foundation for the later study of its protein function and anti-adenovirus drugs.展开更多
Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been...Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.展开更多
The driving effects of climate change and human activities on vegetation change have always been a focal point of research.However,the coupling mechanisms of these driving factors across different temporal and spatial...The driving effects of climate change and human activities on vegetation change have always been a focal point of research.However,the coupling mechanisms of these driving factors across different temporal and spatial scales remain controversial.The Southwestern Alpine Canyon Region of China(SACR),as an ecologically fragile area,is highly sensitive to the impacts of climate change and human activities.This study constructed a vegetation cover dataset for the SACR based on the Enhanced Vegetation Index(EVI)from 2000 to 2020.Spatial autocorrelation,Theil-Sen trend,and Mann-Kendall tests were used to analyze the spatiotemporal characteristics of vegetation cover changes.The main drivers of spatial heterogeneity in vegetation cover were identified using the optimal parameter geographic detector,and an improved residual analysis model was employed to quantify the relative contributions of climate change and human activities to interannual vegetation cover changes.The main findings are as follows:Spatially,vegetation cover exceeds 60%in most areas,especially in the southern part of the study area.However,the border area between Linzhi and Changdu exhibits lower vegetation cover.Climate factors are the primary drivers of spatial heterogeneity in vegetation cover,with temperature having the most significant influence,as indicated by its q-value,which far exceeds that of other factors.Additionally,the interaction q-value between the two factors significantly increases,showing a relationship of bivariate enhancement and nonlinear enhancement.In terms of temporal changes,vegetation cover shows an overall improving trend from 2000 to 2020,with significant increases observed in 68.93%of the study area.Among these,human activities are the main factors driving vegetation cover change,with a relative contribution rate of 41.31%,while climate change and residual factors contribute 35.66%and 23.53%,respectively.By thoroughly exploring the coupled mechanisms of vegetation change,this study provides important references for the sustainable management and conservation of the vegetation ecosystem in the SACR.展开更多
Climate change and human activities such as overgrazing and rapid development of tourism simultaneously affected the vegetation of the Zoige Plateau.However,the spatiotemporal variations of vegetation and the relative...Climate change and human activities such as overgrazing and rapid development of tourism simultaneously affected the vegetation of the Zoige Plateau.However,the spatiotemporal variations of vegetation and the relative contributions of climate change and human activities to these vegetation dynamics remain unclear.Therefore,clarifying how and why the vegetation on the Zoige Plateau changed can provide a scientific basis for the sustainable development of the region.Here,we investigate NDVI trends using the Normalized Difference Vegetation Index(NDVI)as an indicator of vegetation greenness and distinguish the relative effects of climate changes and human activities on vegetation changes by utilizing residual trend analysis and the Geodetector.We find a tendency of vegetation greening from 2001 to 2020,with significant greening accounting for 21.44%of the entire region.However,browning area expanded rapidly after 2011.Warmer temperatures are the primary driver of vegetation changes in the Zoige Plateau.Climatic variations and human activities were responsible for 65.57%and 34.43%of vegetation greening,and 39.14%and 60.86%of vegetation browning,respectively,with browning concentrated along the Yellow,Black and White Rivers.Compared to 2001-2010,the inhibitory effect of human activity and climate fluctuations on vegetation grew dramatically between 2011 and 2020.展开更多
Inpatient falls from beds in hospitals are a common problem.Such falls may result in severe injuries.This problem can be addressed by continuous monitoring of patients using cameras.Recent advancements in deep learnin...Inpatient falls from beds in hospitals are a common problem.Such falls may result in severe injuries.This problem can be addressed by continuous monitoring of patients using cameras.Recent advancements in deep learning-based video analytics have made this task of fall detection more effective and efficient.Along with fall detection,monitoring of different activities of the patients is also of significant concern to assess the improvement in their health.High computation-intensive models are required to monitor every action of the patient precisely.This requirement limits the applicability of such networks.Hence,to keep the model lightweight,the already designed fall detection networks can be extended to monitor the general activities of the patients along with the fall detection.Motivated by the same notion,we propose a novel,lightweight,and efficient patient activity monitoring system that broadly classifies the patients’activities into fall,activity,and rest classes based on their poses.The whole network comprises three sub-networks,namely a Convolutional Neural Networks(CNN)based video compression network,a Lightweight Pose Network(LPN)and a Residual Network(ResNet)Mixer block-based activity recognition network.The compression network compresses the video streams using deep learning networks for efficient storage and retrieval;after that,LPN estimates human poses.Finally,the activity recognition network classifies the patients’activities based on their poses.The proposed system shows an overall accuracy of approx.99.7% over a standard dataset with 99.63% fall detection accuracy and efficiently monitors different events,which may help monitor the falls and improve the inpatients’health.展开更多
基金funded by the National Science and Technology Council,Taiwan(Grant No.NSTC 112-2121-M-039-001)by China Medical University(Grant No.CMU112-MF-79).
文摘Artificial intelligence(AI)technology has become integral in the realm of medicine and healthcare,particularly in human activity recognition(HAR)applications such as fitness and rehabilitation tracking.This study introduces a robust coupling analysis framework that integrates four AI-enabled models,combining both machine learning(ML)and deep learning(DL)approaches to evaluate their effectiveness in HAR.The analytical dataset comprises 561 features sourced from the UCI-HAR database,forming the foundation for training the models.Additionally,the MHEALTH database is employed to replicate the modeling process for comparative purposes,while inclusion of the WISDM database,renowned for its challenging features,supports the framework’s resilience and adaptability.The ML-based models employ the methodologies including adaptive neuro-fuzzy inference system(ANFIS),support vector machine(SVM),and random forest(RF),for data training.In contrast,a DL-based model utilizes one-dimensional convolution neural network(1dCNN)to automate feature extraction.Furthermore,the recursive feature elimination(RFE)algorithm,which drives an ML-based estimator to eliminate low-participation features,helps identify the optimal features for enhancing model performance.The best accuracies of the ANFIS,SVM,RF,and 1dCNN models with meticulous featuring process achieve around 90%,96%,91%,and 93%,respectively.Comparative analysis using the MHEALTH dataset showcases the 1dCNN model’s remarkable perfect accuracy(100%),while the RF,SVM,and ANFIS models equipped with selected features achieve accuracies of 99.8%,99.7%,and 96.5%,respectively.Finally,when applied to the WISDM dataset,the DL-based and ML-based models attain accuracies of 91.4%and 87.3%,respectively,aligning with prior research findings.In conclusion,the proposed framework yields HAR models with commendable performance metrics,exhibiting its suitability for integration into the healthcare services system through AI-driven applications.
基金Under the auspices of the National Social Science Found of China(No.21XGL019)Hainan Provincial Natural Science Foundation of China(No.421RC1034)Professor/Doctor Research Foundation of Huizhou University(No.2022JB080)。
文摘Due to long-term human activity interference,the Hainan Tropical Rainforest National Park(HTRNP)of China has experienced ecological problems such as habitat fragmentation and biodiversity loss,and with the expanding scope and intensity of human activity impact,the regional ecological security is facing serious challenges.A scientific assessment of the interrelationship between human activity intensity and habitat quality in the HTRNP is a prerequisite for achieving effective management of ecological disturbances caused by human activities and can also provide scientific strategies for the sustainable development of the region.Based on the land use change data in 2000,2010,and 2020,the spatial and temporal variations and the relationship between habitat quality(HQ)and human activity intensity(HAI)in the HTRNP were explored using the integrated valuation of ecosystem services and trade-offs(InVEST)model.System dynamics and land use simulation models were also combined to conduct multi-scenario simulations of their relationships.The results showed that during 2000–2020,the habitat quality of the HTRNP improved,the intensity of human activities decreased each year,and there was a negative correlation between the two.Second,the system dynamic model could be well coupled with the land use simulation model by combining socio-economic and natural factors.The simulation scenarios of the coupling model showed that the harmonious development(HD)scenario is effective in curbing the increasing trend of human activity intensity and decreasing trend of habitat quality,with a weaker trade-off between the two compared with the baseline development(BD)and investment priority oriented(IPO)scenarios.To maintain the authenticity and integrity of the HTRNP,effective measures such as ecological corridor construction,ecological restoration,and the implementation of ecological compensation policies need to be strengthened.
基金the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDC02040300)for this study.
文摘RFID-based human activity recognition(HAR)attracts attention due to its convenience,noninvasiveness,and privacy protection.Existing RFID-based HAR methods use modeling,CNN,or LSTM to extract features effectively.Still,they have shortcomings:1)requiring complex hand-crafted data cleaning processes and 2)only addressing single-person activity recognition based on specific RF signals.To solve these problems,this paper proposes a novel device-free method based on Time-streaming Multiscale Transformer called TransTM.This model leverages the Transformer's powerful data fitting capabilities to take raw RFID RSSI data as input without pre-processing.Concretely,we propose a multiscale convolutional hybrid Transformer to capture behavioral features that recognizes singlehuman activities and human-to-human interactions.Compared with existing CNN-and LSTM-based methods,the Transformer-based method has more data fitting power,generalization,and scalability.Furthermore,using RF signals,our method achieves an excellent classification effect on human behaviorbased classification tasks.Experimental results on the actual RFID datasets show that this model achieves a high average recognition accuracy(99.1%).The dataset we collected for detecting RFID-based indoor human activities will be published.
基金supported by National Natural Science Foundation of China(Nos.61902158 and 62202210).
文摘The rapidly advancing Convolutional Neural Networks(CNNs)have brought about a paradigm shift in various computer vision tasks,while also garnering increasing interest and application in sensor-based Human Activity Recognition(HAR)efforts.However,the significant computational demands and memory requirements hinder the practical deployment of deep networks in resource-constrained systems.This paper introduces a novel network pruning method based on the energy spectral density of data in the frequency domain,which reduces the model’s depth and accelerates activity inference.Unlike traditional pruning methods that focus on the spatial domain and the importance of filters,this method converts sensor data,such as HAR data,to the frequency domain for analysis.It emphasizes the low-frequency components by calculating their energy spectral density values.Subsequently,filters that meet the predefined thresholds are retained,and redundant filters are removed,leading to a significant reduction in model size without compromising performance or incurring additional computational costs.Notably,the proposed algorithm’s effectiveness is empirically validated on a standard five-layer CNNs backbone architecture.The computational feasibility and data sensitivity of the proposed scheme are thoroughly examined.Impressively,the classification accuracy on three benchmark HAR datasets UCI-HAR,WISDM,and PAMAP2 reaches 96.20%,98.40%,and 92.38%,respectively.Concurrently,our strategy achieves a reduction in Floating Point Operations(FLOPs)by 90.73%,93.70%,and 90.74%,respectively,along with a corresponding decrease in memory consumption by 90.53%,93.43%,and 90.05%.
基金Under the auspices of National Key Research and Development Program of China(No.2017YFA0604403)National Natural Science Foundation of China(No.41801108)。
文摘Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the development of transborder watershed.In this study,we used global historical land cover data,the hemeroby index model,and synthesized major historical events to analyze how human activity intensity changed in the Heilongjiang River(Amur River in Russia)watershed(HLRW).The results showed that there was a strong spatial heterogeneity in the variation of human activity intensity in the HLRW over the past century(1900-2016).On the Chinese side,the human activity intensity change shifted from the plain areas for agricultural reclamation to the mountainous areas for timber extraction.On the Russian side,human activity intensity changes mostly concentrated along the Trans-Siberian Railway and the Baikal-Amur Mainline.Localized variation of human activity intensity tended to respond to regional events while regionalized variation tends to reflect national policy change or broad international events.The similarities and differences between China and Russia in policies and positions in international events resulted in synchronous and asynchronous changes in human activity intensity.Meanwhile,policy shifts were often confined by the natural features of the watershed.These results reveal the historical origins and fundamental connotations of watershed development and contribute to formulating regional management policies that coordinate population,eco-nomic,social,and environmental activities.
文摘Human Activity Recognition (HAR) is an important way for lower limb exoskeleton robots to implement human-computer collaboration with users. Most of the existing methods in this field focus on a simple scenario recognizing activities for specific users, which does not consider the individual differences among users and cannot adapt to new users. In order to improve the generalization ability of HAR model, this paper proposes a novel method that combines the theories in transfer learning and active learning to mitigate the cross-subject issue, so that it can enable lower limb exoskeleton robots being used in more complex scenarios. First, a neural network based on convolutional neural networks (CNN) is designed, which can extract temporal and spatial features from sensor signals collected from different parts of human body. It can recognize human activities with high accuracy after trained by labeled data. Second, in order to improve the cross-subject adaptation ability of the pre-trained model, we design a cross-subject HAR algorithm based on sparse interrogation and label propagation. Through leave-one-subject-out validation on two widely-used public datasets with existing methods, our method achieves average accuracies of 91.77% on DSAD and 80.97% on PAMAP2, respectively. The experimental results demonstrate the potential of implementing cross-subject HAR for lower limb exoskeleton robots.
基金supported by Korea Institute for Advancement of Technology(KIAT)grant fundedthe Korea Government(MOTIE)(P0012724,The Competency Development Program for Industry Specialist)the Soonchunhyang University Research Fund.
文摘Human Activity Recognition(HAR)has been made simple in recent years,thanks to recent advancements made in Artificial Intelligence(AI)techni-ques.These techniques are applied in several areas like security,surveillance,healthcare,human-robot interaction,and entertainment.Since wearable sensor-based HAR system includes in-built sensors,human activities can be categorized based on sensor values.Further,it can also be employed in other applications such as gait diagnosis,observation of children/adult’s cognitive nature,stroke-patient hospital direction,Epilepsy and Parkinson’s disease examination,etc.Recently-developed Artificial Intelligence(AI)techniques,especially Deep Learning(DL)models can be deployed to accomplish effective outcomes on HAR process.With this motivation,the current research paper focuses on designing Intelligent Hyperparameter Tuned Deep Learning-based HAR(IHPTDL-HAR)technique in healthcare environment.The proposed IHPTDL-HAR technique aims at recogniz-ing the human actions in healthcare environment and helps the patients in mana-ging their healthcare service.In addition,the presented model makes use of Hierarchical Clustering(HC)-based outlier detection technique to remove the out-liers.IHPTDL-HAR technique incorporates DL-based Deep Belief Network(DBN)model to recognize the activities of users.Moreover,Harris Hawks Opti-mization(HHO)algorithm is used for hyperparameter tuning of DBN model.Finally,a comprehensive experimental analysis was conducted upon benchmark dataset and the results were examined under different aspects.The experimental results demonstrate that the proposed IHPTDL-HAR technique is a superior per-former compared to other recent techniques under different measures.
基金supported by the Guangxi University of Science and Technology,Liuzhou,China,sponsored by the Researchers Supporting Project(No.XiaoKeBo21Z27,The Construction of Electronic Information Team Supported by Artificial Intelligence Theory and ThreeDimensional Visual Technology,Yuesheng Zhao)supported by the Key Laboratory for Space-based Integrated Information Systems 2022 Laboratory Funding Program(No.SpaceInfoNet20221120,Research on the Key Technologies of Intelligent Spatio-Temporal Data Engine Based on Space-Based Information Network,Yuesheng Zhao)supported by the 2023 Guangxi University Young and Middle-Aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0352,Research on the Recognition of Psychological Abnormalities in College Students Based on the Fusion of Pulse and EEG Techniques,Yutong Lu).
文摘The purpose of Human Activities Recognition(HAR)is to recognize human activities with sensors like accelerometers and gyroscopes.The normal research strategy is to obtain better HAR results by finding more efficient eigenvalues and classification algorithms.In this paper,we experimentally validate the HAR process and its various algorithms independently.On the base of which,it is further proposed that,in addition to the necessary eigenvalues and intelligent algorithms,correct prior knowledge is even more critical.The prior knowledge mentioned here mainly refers to the physical understanding of the analyzed object,the sampling process,the sampling data,the HAR algorithm,etc.Thus,a solution is presented under the guidance of right prior knowledge,using Back-Propagation neural networks(BP networks)and simple Convolutional Neural Networks(CNN).The results show that HAR can be achieved with 90%–100%accuracy.Further analysis shows that intelligent algorithms for pattern recognition and classification problems,typically represented by HAR,require correct prior knowledge to work effectively.
基金supported by the Guangxi University of Science and Technology,Liuzhou,China,sponsored by the Researchers Supporting Project(No.XiaoKeBo21Z27,The Construction of Electronic Information Team supported by Artificial Intelligence Theory and Three-dimensional Visual Technology,Yuesheng Zhao)supported by the 2022 Laboratory Fund Project of the Key Laboratory of Space-Based Integrated Information System(No.SpaceInfoNet20221120,Research on the Key Technologies of Intelligent Spatiotemporal Data Engine Based on Space-Based Information Network,Yuesheng Zhao)supported by the 2023 Guangxi University Young and Middle-Aged Teachers’Basic Scientific Research Ability Improvement Project(No.2023KY0352,Research on the Recognition of Psychological Abnormalities in College Students Based on the Fusion of Pulse and EEG Techniques,Yutong Luo).
文摘With the rapid advancement of wearable devices,Human Activities Recognition(HAR)based on these devices has emerged as a prominent research field.The objective of this study is to enhance the recognition performance of HAR by proposing an LSTM-1DCNN recognition algorithm that utilizes a single triaxial accelerometer.This algorithm comprises two branches:one branch consists of a Long and Short-Term Memory Network(LSTM),while the other parallel branch incorporates a one-dimensional Convolutional Neural Network(1DCNN).The parallel architecture of LSTM-1DCNN initially extracts spatial and temporal features from the accelerometer data separately,which are then concatenated and fed into a fully connected neural network for information fusion.In the LSTM-1DCNN architecture,the 1DCNN branch primarily focuses on extracting spatial features during convolution operations,whereas the LSTM branch mainly captures temporal features.Nine sets of accelerometer data from five publicly available HAR datasets are employed for training and evaluation purposes.The performance of the proposed LSTM-1DCNN model is compared with five other HAR algorithms including Decision Tree,Random Forest,Support Vector Machine,1DCNN,and LSTM on these five public datasets.Experimental results demonstrate that the F1-score achieved by the proposed LSTM-1DCNN ranges from 90.36%to 99.68%,with a mean value of 96.22%and standard deviation of 0.03 across all evaluated metrics on these five public datasets-outperforming other existing HAR algorithms significantly in terms of evaluation metrics used in this study.Finally the proposed LSTM-1DCNN is validated in real-world applications by collecting acceleration data of seven human activities for training and testing purposes.Subsequently,the trained HAR algorithm is deployed on Android phones to evaluate its performance.Experimental results demonstrate that the proposed LSTM-1DCNN algorithm achieves an impressive F1-score of 97.67%on our self-built dataset.In conclusion,the fusion of temporal and spatial information in the measured data contributes to the excellent HAR performance and robustness exhibited by the proposed 1DCNN-LSTM architecture.
基金This work was supported by financial support from Universiti Sains Malaysia(USM)under FRGS grant number FRGS/1/2020/TK03/USM/02/1the School of Computer Sciences USM for their support.
文摘Human Activity Recognition(HAR)is an active research area due to its applications in pervasive computing,human-computer interaction,artificial intelligence,health care,and social sciences.Moreover,dynamic environments and anthropometric differences between individuals make it harder to recognize actions.This study focused on human activity in video sequences acquired with an RGB camera because of its vast range of real-world applications.It uses two-stream ConvNet to extract spatial and temporal information and proposes a fine-tuned deep neural network.Moreover,the transfer learning paradigm is adopted to extract varied and fixed frames while reusing object identification information.Six state-of-the-art pre-trained models are exploited to find the best model for spatial feature extraction.For temporal sequence,this study uses dense optical flow following the two-stream ConvNet and Bidirectional Long Short TermMemory(BiLSTM)to capture longtermdependencies.Two state-of-the-art datasets,UCF101 and HMDB51,are used for evaluation purposes.In addition,seven state-of-the-art optimizers are used to fine-tune the proposed network parameters.Furthermore,this study utilizes an ensemble mechanism to aggregate spatial-temporal features using a four-stream Convolutional Neural Network(CNN),where two streams use RGB data.In contrast,the other uses optical flow images.Finally,the proposed ensemble approach using max hard voting outperforms state-ofthe-art methods with 96.30%and 90.07%accuracies on the UCF101 and HMDB51 datasets.
基金the National Natural Sci-ence Foundation of China(Grant No.42001139)the Second Ti-betan Plateau Scientific Expedition and Research Program(Grant No.2019QZKK0406)+1 种基金the National Natural Science Foundation of China(Grant No.42230510)the China Postdoctoral Science Foundation(Grant No.2020M670472).
文摘Investigating the spatiotemporal variation of human activity intensity and its determinants is a crucial basis for further revealing the mechanism of human-environment interaction and optimizing the human development mode.In this study,the human activity intensity on the Qinghai-Tibet Plateau(QTP)from 1990 to 2020 was measured based on the quantitative model of land use data and the actual regional background,and the under-lying natural and socioeconomic determinants were investigated using spatial econometric methods.The results demonstrate that(1)the human activity intensity in QTP has increased by 11.96%,and there are differences in different spatial scales;the areas with high human activity intensity are distributed in the Hehuang Valley where Xining City and its surrounding areas are located,as well as the One-River and Two-River Area where Lhasa City and surrounding areas are located.(2)Human activity intensity has significant positive spatial spillover,suggesting that local changes will cause changes in the same direction in adjacent areas.(3)The human activ-ity intensity in QTP is affected by various determinants.Concerning socioeconomic factors,the economic level has no significant impact on the human activity intensity in QTP,which differs from the general regional law.Both urbanization and traffic conditions have a significant positive effect,and the impact intensity continues to increase.Concerning natural factors,topographic relief has a significant positive effect;the impacts of temper-ature and vegetation coverage have changed from insignificant to a significant positive effect;the impacts of precipitation and river network density have not been verified;there is no linear relationship between altitude and human activity intensity in the entire QTP,while it exists in local regions.Finally,this study proposes three policy implications for the realization of a more harmonious human-environment relationship in QTP.
文摘Human Action Recognition(HAR)and pose estimation from videos have gained significant attention among research communities due to its applica-tion in several areas namely intelligent surveillance,human robot interaction,robot vision,etc.Though considerable improvements have been made in recent days,design of an effective and accurate action recognition model is yet a difficult process owing to the existence of different obstacles such as variations in camera angle,occlusion,background,movement speed,and so on.From the literature,it is observed that hard to deal with the temporal dimension in the action recognition process.Convolutional neural network(CNN)models could be used widely to solve this.With this motivation,this study designs a novel key point extraction with deep convolutional neural networks based pose estimation(KPE-DCNN)model for activity recognition.The KPE-DCNN technique initially converts the input video into a sequence of frames followed by a three stage process namely key point extraction,hyperparameter tuning,and pose estimation.In the keypoint extraction process an OpenPose model is designed to compute the accurate key-points in the human pose.Then,an optimal DCNN model is developed to classify the human activities label based on the extracted key points.For improving the training process of the DCNN technique,RMSProp optimizer is used to optimally adjust the hyperparameters such as learning rate,batch size,and epoch count.The experimental results tested using benchmark dataset like UCF sports dataset showed that KPE-DCNN technique is able to achieve good results compared with benchmark algorithms like CNN,DBN,SVM,STAL,T-CNN and so on.
基金supported by the National Natural Science Foundation of China(Grant No.41875113).
文摘The influences of human activity on regional climate over China have been widely reported and drawn great attention from both the scientific community and governments.This paper reviews the evidence of the anthropogenic influence on regional climate over China from the perspectives of surface air temperature(SAT),precipitation,droughts,and surface wind speed,based on studies published since 2018.The reviewed evidence indicates that human activities,including greenhouse gas and anthropogenic aerosol emissions,land use and cover change,urbanization,and anthropogenic heat release,have contributed to changes in the SAT trend and the likelihood of regional record-breaking extreme high/low temperature events over China.The anthropogenically forced SAT signal can be detected back to the 1870s in the southeastern Tibetan Plateau region.Although the anthropogenic signal of summer precipitation over China is detectable and anthropogenic forcing has contributed to an increased likelihood of regional record-breaking heavy/low precipitation events,the anthropogenic precipitation signal over China is relatively obscure.Moreover,human activities have also contributed to a decline in surface wind speed,weakening of monsoon precipitation,and an increase in the frequency of droughts and compound extreme climate/weather events over China in recent decades.This review can serve as a reference both for further understanding the causes of regional climate changes over China and for sound decision-making on regional climate mitigation and adaptation.Additionally,a few key or challenging scientific issues associated with the human influence on regional climate changes are discussed in the context of future research.
文摘Traditional indoor human activity recognition(HAR)is a timeseries data classification problem and needs feature extraction.Presently,considerable attention has been given to the domain ofHARdue to the enormous amount of its real-time uses in real-time applications,namely surveillance by authorities,biometric user identification,and health monitoring of older people.The extensive usage of the Internet of Things(IoT)and wearable sensor devices has made the topic of HAR a vital subject in ubiquitous and mobile computing.The more commonly utilized inference and problemsolving technique in the HAR system have recently been deep learning(DL).The study develops aModifiedWild Horse Optimization withDLAided Symmetric Human Activity Recognition(MWHODL-SHAR)model.The major intention of the MWHODL-SHAR model lies in recognition of symmetric activities,namely jogging,walking,standing,sitting,etc.In the presented MWHODL-SHAR technique,the human activities data is pre-processed in various stages to make it compatible for further processing.A convolution neural network with an attention-based long short-term memory(CNNALSTM)model is applied for activity recognition.The MWHO algorithm is utilized as a hyperparameter tuning strategy to improve the detection rate of the CNN-ALSTM algorithm.The experimental validation of the MWHODL-SHAR technique is simulated using a benchmark dataset.An extensive comparison study revealed the betterment of theMWHODL-SHAR technique over other recent approaches.
文摘Human-Computer Interaction(HCI)is a sub-area within computer science focused on the study of the communication between people(users)and computers and the evaluation,implementation,and design of user interfaces for computer systems.HCI has accomplished effective incorporation of the human factors and software engineering of computing systems through the methods and concepts of cognitive science.Usability is an aspect of HCI dedicated to guar-anteeing that human–computer communication is,amongst other things,efficient,effective,and sustaining for the user.Simultaneously,Human activity recognition(HAR)aim is to identify actions from a sequence of observations on the activities of subjects and the environmental conditions.The vision-based HAR study is the basis of several applications involving health care,HCI,and video surveillance.This article develops a Fire Hawk Optimizer with Deep Learning Enabled Activ-ity Recognition(FHODL-AR)on HCI driven usability.In the presented FHODL-AR technique,the input images are investigated for the identification of different human activities.For feature extraction,a modified SqueezeNet model is intro-duced by the inclusion of few bypass connections to the SqueezeNet among Fire modules.Besides,the FHO algorithm is utilized as a hyperparameter optimization algorithm,which in turn boosts the classification performance.To detect and cate-gorize different kinds of activities,probabilistic neural network(PNN)classifier is applied.The experimental validation of the FHODL-AR technique is tested using benchmark datasets,and the outcomes reported the improvements of the FHODL-AR technique over other recent approaches.
基金Nanjing Science and Technology Plan Project(No.ZX20200009)Jiangsu Province Postgraduate Research and Practice Innovation Program(No.SJCX22-0895)。
文摘Objective:To construct a secretory eukaryotic expression vector of DSG2 fused with the Fc region of the human IgG,to validate its expression in 293T cells,and to purify the secretory protein with biological activity.Methods:The DSG2 extracellular domain fragment gene(DSG2ex),was amplified by PCR,and was inserted into the eukaryotic expression plasmid pCMV3-IgG1 to construct the recombinant eukaryotic expression plasmid-pCMV3-DSG2ex-IgG1.The successfully constructed eukaryotic expression plasmid was transfected into 293T cells to express and secrete DSG2 extracellular domain protein.The targeted protein was purified from the cell culture supernatant by Protein A affinity chromatography and confirmed by Western Blotting and ELISA.Results:The pCMV3-DSG2ex-IgG1 eukaryotic expression plasmid was successfully constructed.The highest protein expression level was obtained with 293T cells after 96 h of transfection.The relative molecular mass of the purified product was between 100 and 130 kDa was estimated by SDS-PAGE,which was consistent with the expectation.The yield of the purified protein reached 0.8 mg/ml with a purity over 90%.The purified DSG2 extracellular domain protein with IgG1 tag was recognized by IgG monoclonal antibodies by Western blotting.Moreover,the ELISA results showed that the prepared DSG2 extracellular domain protein had significant binding activity to human type 55 adenovirus Fiber Knob protein(HAdV-55).Conclusion:A simple and efficient method for eukaryotic expression and purification of human soluble DSG2 extracellular domain protein was successfully established,and biologically active DSG2 extracellular domain protein was purified,which laid the foundation for the later study of its protein function and anti-adenovirus drugs.
基金supported by National Natural Science Foundation of China(grant number 42101318)the National Key R&D Program of China(grant number 2018YFD1100101)。
文摘Ozone(O_(3))pollution has a profound impact on human health,vegetation development,and the ecological environment,making it a critical focus of global academic research.In recent years,O_(3)pollution in China has been on a steady rise,with ozone emerging as the sole conventional pollutant to consistently increase in concentration without any decline.This study conducted a quantitative analysis of O_(3)concentrations across 367 Chinese cities in 2019,examining spatial autocorrelation and local clustering of O_(3)levels,and investigated the diverse relationships between human activity factors and O_(3)concentration.The seasonal fluctuation of O_(3)exhibited the“M-type”pattern,with peak concentrations in winter and the lowest levels in summer.The center of O_(3)pollution migrated southeastward,with the area of highest concentration progressively shifting south along the eastern coast.Moreover,O_(3)concentration showed a strong positive correlation with population density,road freight volume,and industrial emissions,suggesting that human activities,vehicle emissions,and industrial operations are significant contributors to O_(3)production.The results provide comprehensive information on the characteristics,causes,and occurrence mechanism of O_(3)in Chinese cities that can be utilized by global government departments to formulate strategies to prevent and control O_(3)pollution.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFF1302903).
文摘The driving effects of climate change and human activities on vegetation change have always been a focal point of research.However,the coupling mechanisms of these driving factors across different temporal and spatial scales remain controversial.The Southwestern Alpine Canyon Region of China(SACR),as an ecologically fragile area,is highly sensitive to the impacts of climate change and human activities.This study constructed a vegetation cover dataset for the SACR based on the Enhanced Vegetation Index(EVI)from 2000 to 2020.Spatial autocorrelation,Theil-Sen trend,and Mann-Kendall tests were used to analyze the spatiotemporal characteristics of vegetation cover changes.The main drivers of spatial heterogeneity in vegetation cover were identified using the optimal parameter geographic detector,and an improved residual analysis model was employed to quantify the relative contributions of climate change and human activities to interannual vegetation cover changes.The main findings are as follows:Spatially,vegetation cover exceeds 60%in most areas,especially in the southern part of the study area.However,the border area between Linzhi and Changdu exhibits lower vegetation cover.Climate factors are the primary drivers of spatial heterogeneity in vegetation cover,with temperature having the most significant influence,as indicated by its q-value,which far exceeds that of other factors.Additionally,the interaction q-value between the two factors significantly increases,showing a relationship of bivariate enhancement and nonlinear enhancement.In terms of temporal changes,vegetation cover shows an overall improving trend from 2000 to 2020,with significant increases observed in 68.93%of the study area.Among these,human activities are the main factors driving vegetation cover change,with a relative contribution rate of 41.31%,while climate change and residual factors contribute 35.66%and 23.53%,respectively.By thoroughly exploring the coupled mechanisms of vegetation change,this study provides important references for the sustainable management and conservation of the vegetation ecosystem in the SACR.
基金partially financed by the National Natural Science Foundation of China(Grant No.42201439)Natural Science Foundation of Sichuan Provincial Department of Science and Technology(Grant No.2022NSFSC1082)Key Laboratory of Smart Earth(No.KF2023YB02-12).
文摘Climate change and human activities such as overgrazing and rapid development of tourism simultaneously affected the vegetation of the Zoige Plateau.However,the spatiotemporal variations of vegetation and the relative contributions of climate change and human activities to these vegetation dynamics remain unclear.Therefore,clarifying how and why the vegetation on the Zoige Plateau changed can provide a scientific basis for the sustainable development of the region.Here,we investigate NDVI trends using the Normalized Difference Vegetation Index(NDVI)as an indicator of vegetation greenness and distinguish the relative effects of climate changes and human activities on vegetation changes by utilizing residual trend analysis and the Geodetector.We find a tendency of vegetation greening from 2001 to 2020,with significant greening accounting for 21.44%of the entire region.However,browning area expanded rapidly after 2011.Warmer temperatures are the primary driver of vegetation changes in the Zoige Plateau.Climatic variations and human activities were responsible for 65.57%and 34.43%of vegetation greening,and 39.14%and 60.86%of vegetation browning,respectively,with browning concentrated along the Yellow,Black and White Rivers.Compared to 2001-2010,the inhibitory effect of human activity and climate fluctuations on vegetation grew dramatically between 2011 and 2020.
基金the Deanship of Scientific Research at Majmaah University for funding this work under Project No.R-2023-667.
文摘Inpatient falls from beds in hospitals are a common problem.Such falls may result in severe injuries.This problem can be addressed by continuous monitoring of patients using cameras.Recent advancements in deep learning-based video analytics have made this task of fall detection more effective and efficient.Along with fall detection,monitoring of different activities of the patients is also of significant concern to assess the improvement in their health.High computation-intensive models are required to monitor every action of the patient precisely.This requirement limits the applicability of such networks.Hence,to keep the model lightweight,the already designed fall detection networks can be extended to monitor the general activities of the patients along with the fall detection.Motivated by the same notion,we propose a novel,lightweight,and efficient patient activity monitoring system that broadly classifies the patients’activities into fall,activity,and rest classes based on their poses.The whole network comprises three sub-networks,namely a Convolutional Neural Networks(CNN)based video compression network,a Lightweight Pose Network(LPN)and a Residual Network(ResNet)Mixer block-based activity recognition network.The compression network compresses the video streams using deep learning networks for efficient storage and retrieval;after that,LPN estimates human poses.Finally,the activity recognition network classifies the patients’activities based on their poses.The proposed system shows an overall accuracy of approx.99.7% over a standard dataset with 99.63% fall detection accuracy and efficiently monitors different events,which may help monitor the falls and improve the inpatients’health.