期刊文献+
共找到2,228篇文章
< 1 2 112 >
每页显示 20 50 100
O-linkedβ-N-acetylglucosaminylation may be a key regulatory factor in promoting osteogenic differentiation of bone marrow mesenchymal stromal cells
1
作者 Xu-Chang Zhou Guo-Xin Ni 《World Journal of Stem Cells》 SCIE 2024年第3期228-231,共4页
Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors ... Cumulative evidence suggests that O-linkedβ-N-acetylglucosaminylation(OGlcNAcylation)plays an important regulatory role in pathophysiological processes.Although the regulatory mechanisms of O-GlcNAcylation in tumors have been gradually elucidated,the potential mechanisms of O-GlcNAcylation in bone metabolism,particularly,in the osteogenic differentiation of bone marrow mesenchymal stromal cells(BMSCs)remains unexplored.In this study,the literature related to O-GlcNAcylation and BMSC osteogenic differentiation was reviewed,assuming that it could trigger more scholars to focus on research related to OGlcNAcylation and bone metabolism and provide insights into the development of novel therapeutic targets for bone metabolism disorders such as osteoporosis. 展开更多
关键词 O-GLCNACYLATION Osteogenic differentiation bone marrow mesenchymal stromal cells OSTEOPOROSIS
下载PDF
Senescent mesenchymal stem/stromal cells in pre-metastatic bone marrow of untreated advanced breast cancer patients
2
作者 FRANCISCO RAÚL BORZONE MARÍA BELÉN GIORELLO +6 位作者 LEANDRO MARCELO MARTINEZ MARÍA CECILIA SANMARTIN LEONARDO FELDMAN FEDERICO DIMASE EMILIO BATAGELJ GUSTAVO YANNARELLI NORMA ALEJANDRA CHASSEING 《Oncology Research》 SCIE 2023年第3期361-374,共14页
Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cel... Breast cancer is the predominant form of carcinoma among women worldwide,with 70%of advanced patients developing bone metastases,with a high mortality rate.In this sense,the bone marrow(BM)mesenchymal stem/stromal cells(MSCs)are critical for BM/bone homeostasis,and failures in their functionality,transform the BM into a premetastatic niche(PMN).We previously found that BM-MSCs from advanced breast cancer patients(BCPs,infiltrative ductal carcinoma,stage III-B)have an abnormal profile.This work aims to study some of the metabolic and molecular mechanisms underlying MSCs shift from a normal to an abnormal profile in this group of patients.A comparative analysis was undertaken,which included self-renewal capacity,morphology,proliferation capacity,cell cycle,reactive oxygen species(ROS)levels,and senescence-associatedβ‑galactosidase(SA‑β‑gal)staining of BMderived MSCs isolated from 14 BCPs and 9 healthy volunteers(HVs).Additionally,the expression and activity of the telomerase subunit TERT,as well as telomere length,were measured.Expression levels of pluripotency,osteogenic,and osteoclastogenic genes(OCT-4,SOX-2,M-CAM,RUNX-2,BMP-2,CCL-2,M-CSF,and IL-6)were also determined.The results showed that MSCs from BCPs had reduced,self-renewal and proliferation capacity.These cells also exhibited inhibited cell cycle progression and phenotypic changes,such as an enlarged and flattened appearance.Additionally,there was an increase in ROS and senescence levels and a decrease in the functional capacity of TERT to preserve telomere length.We also found an increase in pro-inflammatory/pro-osteoclastogenic gene expression and a decrease in pluripotency gene expression.We conclude that these changes could be responsible for the abnormal functional profile that MSCs show in this group of patients. 展开更多
关键词 Mesenchymal stem/stromal cells Senescence Breast cancer bone marrow Pre-metastatic niche bone metastasis
下载PDF
Constitutive aryl hydrocarbon receptor facilitates the regenerative potential of mouse bone marrow mesenchymal stromal cells
3
作者 Jing Huang Yi-Ning Wang Yi Zhou 《World Journal of Stem Cells》 SCIE 2023年第8期807-820,共14页
BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the ... BACKGROUND Bone marrow mesenchymal stromal cells(BMSCs)are the commonly used seed cells in tissue engineering.Aryl hydrocarbon receptor(AhR)is a transcription factor involved in various cellular processes.However,the function of constitutive AhR in BMSCs remains unclear.AIM To investigate the role of AhR in the osteogenic and macrophage-modulating potential of mouse BMSCs(mBMSCs)and the underlying mechanism.METHODS Immunochemistry and immunofluorescent staining were used to observe the expression of AhR in mouse bone marrow tissue and mBMSCs.The overexpression or knockdown of AhR was achieved by lentivirus-mediated plasmid.The osteogenic potential was observed by alkaline phosphatase and alizarin red staining.The mRNA and protein levels of osteogenic markers were detected by quantitative polymerase chain reaction(qPCR)and western blot.After coculture with different mBMSCs,the cluster of differentiation(CD)86 and CD206 expressions levels in RAW 264.7 cells were analyzed by flow cytometry.To explore the underlying molecular mechanism,the interaction of AhR with signal transducer and activator of transcription 3(STAT3)was observed by co-immunoprecipitation and phosphorylation of STAT3 was detected by western blot.RESULTS AhR expressions in mouse bone marrow tissue and isolated mBMSCs were detected.AhR overexpression enhanced the osteogenic potential of mBMSCs while AhR knockdown suppressed it.The ratio of CD86+RAW 264.7 cells cocultured with AhR-overexpressed mBMSCs was reduced and that of CD206+cells was increased.AhR directly interacted with STAT3.AhR overexpression increased the phosphorylation of STAT3.After inhibition of STAT3 via stattic,the promotive effects of AhR overexpression on the osteogenic differentiation and macrophage-modulating were partially counteracted.CONCLUSION AhR plays a beneficial role in the regenerative potential of mBMSCs partially by increasing phosphorylation of STAT3. 展开更多
关键词 Aryl hydrocarbon receptor bone marrow mesenchymal stromal cells OSTEOGENESIS MACROPHAGE Signal transducer and activator of transcription 3 Interaction
下载PDF
Exploring the Mechanism of CircRNA-vgll3 in Osteogenically Differentiated Human Bone Marrow Mesenchymal Stem Cells
4
作者 Yajie Huo Yu Mao +9 位作者 Fang Luo Fengjiao Zhang Lifang Xie Xiaoke Zhang Kai Liu Ling Sun Hongmei Liu Lige Song Huanhuan Wang Zhiqiang Kang 《Journal of Clinical and Nursing Research》 2023年第4期151-158,共8页
Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high... Objective:To explore the mechanism of circRNA-vgll3 in osteogenic differentiation of human bone marrow mesenchymal stem cells.Methods:BMSCs cells were transfected with circRNA-vgll3,and divided into circRNA-vgll3 high-level group,circRNA-vgll3 low-level group,and negative control group(circRNA-vgll3 not transfected)according to the amount of transfection.The proliferation and apoptosis of BMSCs osteoblasts in each group were analyzed,and the alkaline phosphatase(ALP)activity,type I collagen gray value,bone morphogenetic protein 2(BMP-2),Runx2 protein,and mRNA expression levels were detected.Results:The circRNA-vgll3 low-level group had a significant inhibitory effect on the proliferation of BMSCs osteoblasts,and the apoptosis rate of the circRNA-vgll3 low-level group was significantly higher than that of the circRNA-vgll3 high-level group(P<0.05);ALP activity,type I collagen gray value,BMP-2,Runx2 protein,and mRNA expression levels in the high-level circRNA-vgll3 group were significantly higher than those in the low-level circRNA-vgll3 group,and the difference was statistically significant(P<0.05).Conclusion:Overexpression of circRNA-vgll3 can promote the osteogenic differentiation ability of BMSCs,while low expression of circRNA-vgll3 can inhibit the osteogenic differentiation ability of BMSCs.The main mechanism of action is that circRNA-vgll3 can affect osteogenic differentiation by regulating the Runx2 protein. 展开更多
关键词 CircRNA-vgll3 Osteogenic differentiation human bone marrow mesenchymal stem cells Mechanism of action
下载PDF
Mesenchymal Stromal Cells Derived from Human Embryonic Stem Cells, Fetal Limb and Bone Marrow Share a Common Phenotype but Are Transcriptionally and Biologically Different 被引量:2
5
作者 Candida Vaz Betty Tan Bee Tee +2 位作者 Delicia Yong Qian Yi Lee Vivek Tanavde 《Stem Cell Discovery》 2017年第1期1-26,共26页
Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to ... Mesenchymal stromal cells (MSCs) can be obtained from several sources and the significant differences in their properties make it crucial to investigate the differentiation potential of MSCs from different sources to determine the optimal source of MSCs. We investigated if this biological heterogeneity in MSCs from different sources results in different mechanisms for their differentiation. In this study, we compared the gene expression patterns of phenotypically defined MSCs derived from three ontogenically different sources: Embryonic stem cells (hES-MSCs), Fetal limb (Flb-MSCs) and Bone Marrow (BM-MSCs). Differentially expressed genes between differentiated cells and undifferentiated controls were compared across the three MSC sources. We found minimal overlap (5% - 16%) in differentially expressed gene sets among the three sources. Flb-MSCs were similar to BM-MSCs based on differential gene expression patterns. Pathway analysis of the differentially expressed genes using Ingenuity Pathway Analysis (IPA) revealed a large variation in the canonical pathways leading to MSC differentiation. The similar canonical pathways among the three sources were lineage specific. The Flb-MSCs showed maximum overlap of canonical pathways with the BM-MSCs, indicating that the Flb-MSCs are an intermediate source between the less specialised hES-MSC source and the more specialised BM-MSC source. The source specific pathways prove that MSCs from the three ontogenically different sources use different biological pathways to obtain similar differentiation outcomes. Thus our study advocates the understanding of biological pathways to obtain optimal sources of MSCs for various clinical applications. 展开更多
关键词 Mesenchymal stromal cellS (MSCs) human Embryonic Stem cellS DERIVED MSCS (hES-MSCs) FETAL LIMB DERIVED MSCS (Flb-MSCs) bone marrow DERIVED MSCS (BM-MSCs) Ontogenically DIFFERENT Sources Source Specific Canonical Pathways
下载PDF
Human bone marrow stromal cells in cooperation with exogenous cytokines support in vitro expansion of cord blood CD34^+ cells
6
《中国输血杂志》 CAS CSCD 2001年第S1期411-,共1页
关键词 bone human bone marrow stromal cells in cooperation with exogenous cytokines support in vitro expansion of cord blood CD34 cells CD
下载PDF
Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin 被引量:1
7
作者 苏雅茹 王坚 +2 位作者 邬剑军 陈嬿 蒋雨平 《Neuroscience Bulletin》 SCIE CAS CSCD 2007年第2期67-74,共8页
Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by... Objective To construct recombinant lentiviral vectors for gene delivery of the glial cell line-derived neurotropnic factor (GDNF), and evaluate the neuroprotective effect of GDNF on lactacystin-damaged PC12 cells by transfecting it into bone marrow stromal cells (BMSCs). Methods pLenti6/V5-GDNF plasmid was set up by double restriction enzyme digestion and ligation, and then the plasmid was transformed into Top10 cells. Purified pLenti6/V5-GDNF plasmids from the positive clones and the packaging mixture were cotransfected to the 293FT packaging cell line by Lipofectamine2000 to produce lentivirus, then the concentrated virus was transduced to BMSCs. Overexpression of GDNF in BMSCs was tested by RT-PCR, ELISA and immunocytochemistry, and its neuroprotection for lactacystin-damaged PC12 cells was evaluated by MTT assay. Results Virus stock of GDNF was harvested with the titer of 5.6×10^5 TU/mL. After tmnsduction, GDNF-BMSCs successfully secreted GDNF to supematant with nigher concentration (800 pg/mL) than BMSCs did (less than 100 pg/mL). The supematant of GDNF-BMSCs could significantly alleviate the damage of PC12 cells induced by lactacystin (10 μmol/L). Conclusion Overexpression of lentivirus-mediated GDNF in the BMSCs cells can effectively protect PC12 cells from the injury by the proteasome inhibitor. 展开更多
关键词 Parkinson' s disease proteasome inhibitor glial cell line-derived neurotropnic factor LENTIVIRUS gene therapy bone marrow stromal cells
下载PDF
Preliminary delivery efficiency prediction of nanotherapeutics into crucial cell populations in bone marrow niche
8
作者 Huijuan Chen Anzhi Hu +6 位作者 Mengdi Xiao Shiyi Hong Jing Liang Quanlong Zhang Yang Xiong Mancang Gu Chaofeng Mu 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2023年第6期113-125,共13页
Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches.Precise regulation of these cell types can remodel niches and develop new therapeutics.Multiple nanocarriers... Several crucial stromal cell populations regulate hematopoiesis and malignant diseases in bone marrow niches.Precise regulation of these cell types can remodel niches and develop new therapeutics.Multiple nanocarriers have been developed to transport drugs into the bone marrow selectively.However,the delivery efficiency of these nanotherapeutics into crucial niche cells is still unknown,and there is no method available for predicting delivery efficiency in these cell types.Here,we constructed a three-dimensional bone marrow niche composed of three crucial cell populations:endothelial cells(ECs),mesenchymal stromal cells(MSCs),and osteoblasts(OBs).Mimetic niches were used to detect the cellular uptake of three typical drug nanocarriers into ECs/MSCs/OBs in vitro.Less than 5%of nanocarriers were taken up by three stromal cell types,and most of themwere located in the extracellular matrix.Delivery efficiency in sinusoidal ECs,arteriole ECs,MSCs,and OBs in vivo was analyzed.The correlation analysis showed that the cellular uptake of three nanocarriers in crucial cell types in vitro is positively linear correlated with its delivery efficiency in vivo.The delivery efficiency into MSCs was remarkably higher than that into ECs and OBs,no matterwhat kind of nanocarrier.The overall efficiency into sinusoidal ECswas greatly lower than that into arteriole ECs.All nanocarriers were hard to be delivered into OBs(<1%).Our findings revealed that cell tropisms of nanocarriers with different compositions and ligand attachments in vivo could be predicted via detecting their cellular uptake in bone marrow niches in vitro.This study provided the methodology for niche-directed nanotherapeutics development. 展开更多
关键词 bone marrow niche mimicking Drug delivery prediction Nanotherapeutics bone marrow stromal cells
下载PDF
Bone Marrow Stromal Cells Express Neural Phenotypes in vitro and Migrate in Brain After Transplantation in vivo 被引量:29
9
作者 LI-YE YAN TIAN-HUA HUANG LIAN MA 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第5期329-335,共7页
Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cul... Objective To investigate the differentiation of bone marrow stromal cells (BMSC) into neuron-like cells and to explore their potential use for neural transplantation. Methods BMSC from rats and adult humans were cultured in serum-containing media. Salvia miltiorrhiza was used to induce human BMSC (hBMSC) to differentiate. BMSC were identified with immunocytochemistry. Semi-quantitative RT-PCR was used to examine mRNA expression of neurofilamentl (NF1), nestin and neuron-specific enolase (NSE) in rat BMSC (rBMSC). Rat BMSC labelled by Hoschst33258 were transplanted into striatum of rats to trace migration and distribution. Results rBMSC expressed NSE, NFI and nestin mRNA, and NF1 mRNA and expression was increased with induction of Salvia miltiorrhiza. A small number of hBMSC were stained by anti-nestin, anti-GFAP and anti-S 100. Salvia miltiorrhiza could induce hBMSC to differentiate into neuron-like cells. Some differentiated neuron-like cells, that expressed NSE, beta-tubulin and NF-200, showed typical neuron morphology, but some neuron-like cells also expressed alpha smooth muscle protein, making their neuron identification complicated, rBMSC could migrate and adapted in the host brains after being transplanted. Conclusion Bone marrow stromal cells could express phenotypes of neurons, and Salvia milliorrhiza could induce hBMSC to differentiate into neuron-like cells, If BMSC could be converted into neurons instead of mesenchymal derivatives, they would be an abundant and accessible cellular source to treat a variety of neurological diseases. 展开更多
关键词 bone marrow stromal cell cell transplantation Differentiation NEURON Stem cell Salvia miltiorrhiza
下载PDF
Glial cell-derived neurotrophic factor mRNA expression in a rat model of spinal cord injury following bone marrow stromal cell transplantation 被引量:13
10
作者 Lei Li Gang Lu +5 位作者 Yanfeng Wang Hong Gao XinXu Lunhao Bai Lunhao Bai Huan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第10期1056-1059,共4页
BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated w... BACKGROUND: Several animal experiments utilizing bone marrow stromal cell (BMSC) transplantation for the treatment of spinal cord injury have proposed a hypothesis that BMSC transplantation effects are associated with increased glial cell-derived neurotrophic factor (GDNF) expression. OBJECTIVE: To confirm the effects of BMSC transplantation on GDNF mRNA expression in rats with spinal cord injury by reverse transcription-polymerase chain reaction (RT-PCR). DESIGN, TIME AND SETTING: The present molecular, cell biology experiment was performed at the Key Laboratory of Children's Congenital Malformation, Ministry of Health of China & Department of Developmental Biology, Basic Medical College, China Medical University between March 2006 and May 2007. MATERIALS: Sixty healthy Wistar rats aged 2-4-months and of either gender were included in this study. Spinal cord injury was induced in all rats by hemisection of T9 on the left side. RT-PCR kits were purchased from TaKaRa Company, China. Type 9600 RCR amplifier was provided by Perkin Elmer Company, USA. METHODS: Three rats were selected for BMSC culture and subsequent transplantation (after three passages). Of the remaining 57 rats, nine were selected for sham-operation (sham-operated group), where only the T9 spinal cord was exposed without hemisection. A total of 48 rats were randomly and evenly divided into BMSC transplantation and model groups. In the BMSC transplantation group, following spinal cord injury induction, each rat was administered a BMSC suspension tbrougb two injection sites selected on the gray and white matter boundary caudally and cephalically, seperately and near to injury site in the spinal cord. The model group received an equal volume of PBS through the identical injection sites. MAIN OUTCOME MEASURES: At 24 and 72 hours, as well as at 7 days, following spinal cord injury, the spinal cord at the T9 segment was removed. Eight rats were allocated to each time point in the BMSC transplantation and model groups, with three rats allocated to the sham-operated group. GDNF mRNA expression was semiquantitatively analyzed by RT-PCR. RESULTS: The sham-operated group exhibited extremely low GDNF mRNA expression. GDNF mRNA expression significantly increased at 24 hours after spinal cord injury, reached a peak level at 72 hours, and slowly decreased thereafter. However, it remained higher than normal levels at 7 days (P 〈 0.05). At all time points following spinal cord injury, GDNF mRNA expression was significantly greater in the BMSC transplantation group than in the model group (P 〈 0.05). CONCLUSION: Transplantation of BMSCs into the injured spinal cord up-regulated GDNF mRNA expression, thereby promoting repair of the injured spinal cord. 展开更多
关键词 bone marrow stromal cells neurotrophic factors spinal cord injury TRANSPLANTATION
下载PDF
Cell transplantation for the treatment of spinal cord injury–bone marrow stromal cells and choroid plexus epithelial cells 被引量:9
11
作者 Chizuka Ide Norihiko Nakano Kenji Kanekiyo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1385-1388,共4页
Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappe... Transplantation of bone marrow stromal cells (BMSCs) enhanced the outgrowth of regenerating axons and promoted locomotor improvements of rats with spinal cord injury (SCI). BMSCs did not survive long-term, disappearing from the spinal cord within 2-3 weeks after transplantation. Astrocyte-devoid areas, in which no astrocytes or oligodendrocytes were found, formed at the epicenter of the lesion. It was remarkable that numerous regenerating axons extended through such astrocyte-devoid areas. Regenerating axons were associated with Schwann cells embedded in extracellular matrices. Transplantation of choroid plexus epithelial cells (CPECs) also enhanced axonal regeneration and locomotor improvements in rats with SCI. Although CPECs disappeared from the spinal cord shortly after transplantation, an extensive outgrowth of regenerating axons occurred through astrocyte-devoid areas, as in the case of BMSC transplantation. These findings suggest that BMSCs and CPECs secret neurotrophic factors that promote tissue repair of the spinal cord, including axonal regeneration and reduced cavity formation. This means that transplantation of BMSCs and CPECs promotes "intrinsic" ability of the spinal cord to regenerate. The treatment to stimu- late the intrinsic regeneration ability of the spinal cord is the safest method of clinical application for SCI. It should be emphasized that the generally anticipated long-term survival, proliferation and differentiation of transplanted cells are not necessarily desirable from the clinical point of view of safety. 展开更多
关键词 bone marrow stromal cell choroid plexus epithelial cell spinal cord injury axonal regeneration locomotor improvement intrinsic regeneration ability
下载PDF
Millimeter-wave Exposure Promotes the Differentiation of Bone Marrow Stromal Cells into Cells with a Neural Phenotype 被引量:9
12
作者 童叶青 杨朝辉 +5 位作者 杨迪 楚慧款 曲敏 刘冠兰 吴艳 刘胜洪 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第4期409-412,共4页
This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3,... This study investigated the ability of millimeter-wave (MMW) to promote the differentiation of bone marrow stromal cells (BMSCs) into cells with a neural phenotype. The BMSCs were primarily cultured. At passage 3, the cells were induced by β-mercaptoethanol (BME) in combination with MMW or BME alone. The expressions of nucleostemin (NS) and neuron-specific enolase (NSE) were detected by immunofluorescent staining and Western blotting respectively to identify the differentiation. The untreated BMSCs predominately expressed NS. After induced by BME and MMW, the BMSCs exhibited a dramatic decrease in NS expression and increase in NSE expression. The differentiation rate of the cells treated with BME and MMW in combination was significantly higher than that of the cells treated with BME alone (P〈0.05). It was concluded that MMW exposure enhanced the inducing effect of BME on the differentiation of BMSCs into cells with a neural phenotype. 展开更多
关键词 bone marrow stromal cells β-mercaptoethanol MILLIMETER-WAVE NUCLEOSTEMIN neuron specific enolase
下载PDF
HNF-4α determines hepatic differentiation of human mesenchymal stem cells from bone marrow 被引量:9
13
作者 Mong-Liang Chen Kuan-Der Lee +5 位作者 Huei-Chun Huang Yue-Lin Tsai Yi-Chieh Wu Tzer-Min Kuo Cheng-Po Hu Chungming Chang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第40期5092-5103,共12页
AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induce... AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications. 展开更多
关键词 bone marrow Cytochrome P450 genes Differentiation of hepatocyte Hepatocyte nuclear factor 4 human mesenchymal stem cells
下载PDF
Cardiomyocyte-like differentiation of human bone marrow mesenchymal stem cells after exposure to 5-azacytidine in vitro 被引量:5
14
作者 Feng CAO Lili NIU Ling MENG Lianxu ZHAO Dongmei Wang Ming ZHENG Cixian BAI Guoliang JIA Xuetao PEI 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2004年第2期101-107,共7页
Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small ... Objective To investigate the potential of adult mesenchymal stem cells (MSCs) derived from human bone marrow to undergo cardiomyogenic differentiation after exposure to 5-azacytidine (5-aza) in vitro. Methods A small bone marrow aspirate was taken from the iliac crest of human volunteers, and hMSCs were isolated by 1.073g/mL Percoll and propagated in the right cell culturing medium as previously described. The phenotypes of hMSCs were characterized with the use of flow cytometry. The hMSCs were cultured in cell culture medium (as control) and medium mixed with 5-aza for cellular differentiation. We examined by immunohistochemistry at 21 days the inducement of desmin, cardiac-specific cardiac troponin I (cTnI), GATA 4 and connexin-43 respectively. Results The hMSCs are fibroblast-like morphology and express CD44+ CD29+ CD90+ / CD34- CD45- CD31- CD11a. After 5-aza treatment, 20-30% hMSCs connected with adjoining cells and coalesced into myotube structures after 14days. Twenty-one days after 5-aza treatment, immunofluorescence showed that some cells expressed desmin,GATA4, cTnI and connexin-43 in 5,10 μmol/L 5-aza groups, but no cardiac specific protein was found in neither 3μmol/L 5-aza group nor in the control group. The ratio of cTnI positively stained cells in 10 μmol/L group was higher than that in 5 μmol/L group (65.3 ± 4.7% vs 48.2 ± 5.4%, P < 0.05). Electron microscopy revealed that myofilaments were formed. The induced cells expressed cardiac-myosin heavy chain (MyHC) gene by reverse transcription-polymerase chain reaction (RT-PCR). Conclusions Theses findings suggest that hMSCs from adult bone marrow can be differentiated into cardiac-like muscle cells with 5-aza inducement in vitro and the differentiation is in line with the 5-aza concentration. (J Geriatr Cardiol 2004;1(2) :101-107. ) 展开更多
关键词 human bone marrow MESENCHYMAL stem cells CARDIOMYOCYTES DIFFERENTIATION 5-AZACYTIDINE
下载PDF
The genomic landscapes of histone H3-Lys9 modifications of gene promoter regions and expression profiles in human bone marrow mesenchymal stem cells 被引量:7
15
作者 Jiang Tan Hui Huang +4 位作者 Wei Huang Lin Li Jianhua Guo Baiqu Huang Jun Lu 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第10期585-593,共9页
Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the ... Mesenchymal stem cells (MSCs) of nonembryonic origins possess the proliferation and multi-lineage differentiation potentials. It has been established that epigenetic mechanisms could be critical for determining the fate of stem cells, and MSCs derived from different origins exhibited different expression profiles individually to a certain extent. In this study, ChiP-on-chip was used to generate genome-wide histone H3-Lys9 acetylation and dimethylation profiles at gene promoters in human bone marrow MSCs. We showed that modifications of histone H3-Lys9 at gene promoters correlated well with mRNA expression in human bone marrow MSCs. Functional analysis revealed that many key cellular pathways in human bone marrow MSC self-renewal, such as the canonical signaling pathways, cell cycle pathways and cytokine related pathways may be regulated by H3-Lys9 modifications. These data suggest that gene activation and silencing affected by H3-Lys9 acetylation and dimethylation, respectively, may be essential to the maintenance of human bone marrow MSC self-renewal and multi-potency. 展开更多
关键词 human bone marrow mesenchymal stem cells (MSCs) H3-Lys9 acetylation H3-Lys9 dimethylation CHIP-ON-CHIP MICROARRAY
下载PDF
Adipose-derived stromal cells resemble bone marrow stromal cells in hepatocyte differentiation potential in vitro and in vivo 被引量:7
16
作者 Li-juan Xu Shu-fang Wang +5 位作者 De-Qing Wang Lian-jun Ma Zheng Chen Qian-Qian Chen Jun Wang Li Yan 《World Journal of Gastroenterology》 SCIE CAS 2017年第38期6973-6982,共10页
AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were ... AIM To investigate whether mesenchymal stem cells(MSCs) from adipose-derived stromal cells(ADSCs) and bone marrow stromal cells(BMSCs) have similar hepatic differentiation potential.METHODS Mouse ADSCs and BMSCs were isolated and cultured. Their morphological and phenotypic characteristics, as well as their multiple differentiation capacity were compared. A new culture system was established to induce ADSCs and BMSCs into functional hepatocytes. Reverse transcription polymerase chain reaction, Western blot, and immunofluorescence analyses were performed to identify the induced hepatocytelike cells. CM-Dil-labeled ADSCs and BMSCs were then transplanted into a mouse model of CCl4-induced acute liver failure. fluorescence microscopy was used to track the transplanted MSCs. Liver function was tested by an automatic biochemistry analyzer, and liver tissue histology was observed by hematoxylin and eosin(HE) staining.RESULTS ADSCs and BMSCs shared a similar morphology and multiple differentiation capacity, as well as a similar phenotype(with expression of CD29 and CD90 and no expression of CD11 b or CD45). Morphologically, ADSCs and BMSCs became round and epithelioid following hepatic induction. These two cell types differentiated into hepatocyte-like cells with similar expression of albumin, cytokeratin 18, cytokeratin 19, alpha fetoprotein, and cytochrome P450. fluorescence microscopy revealed that both ADSCs and BMSCs were observed in the mouse liver at different time points. Compared to the control group, both the function of the injured livers and HE staining showed significant improvement in the ADSC-and BMSC-transplanted mice. There was no significant difference between the two MSC groups.CONCLUSION ADSCs share a similar hepatic differentiation capacity and therapeutic effect with BMSCs in an acute liver failure model. ADSCs may represent an ideal seed cell type for cell transplantation or a bio-artificial liver support system. 展开更多
关键词 Adipose-derived stromal cells bone marrow stromal cells cell differentiation Hepatocyte differentiation
下载PDF
Expression of Neuropilin-1 Gene in Bone Marrow Stromal Cells from Patients with Myeloid Leukemia and Normal Individuals
17
作者 宿颖 王震 +4 位作者 吴秀丽 黄梅娟 陈少华 杨力建 李扬秋 《The Chinese-German Journal of Clinical Oncology》 CAS 2005年第3期171-173,190,共4页
Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone ... Objective: To investigate the expression of neuropilin-1 (NP-1) gene in bone marrow stromal cells (BMSCs) from myeloid leukemia (AML and CML) and normal individuals. Methods: Mononuclear cells were isolated from bone marrow (BM) of CML (14 cases), AML (12 cases) and normal individuals (20 cases). Adherent cells (i.e. BMSCs) were collected after long-term culture in vitro. The expression of NP-1 gene in three groups was detected respectively by reverse-transcription polymerase chain reaction (RT-PCR). Results: The long-term culture of BMSCs was successfully established. The expression level of NP-1 gene was significantly lower in BMSCs from AML (47.1%) and CML (50%) than in normal individuals (85%). Conclusion: NP-1 gene is expressed in BMSCs from some AML or CML patients and most normal individuals. The low-expression of NP-1 gene in BMSCs from AML or CML patients might be related with abnormality of regulation in hematopoiesis. 展开更多
关键词 neuropilin-1 gene myeloid leukemia bone marrow stromal cell
下载PDF
Intra-portal transplantation of bone marrow stromal cells ameliorates liver fibrosis in mice 被引量:4
18
作者 Zheng, Jin-Fang Liang, Li-Jian 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS 2008年第3期264-270,共7页
BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver fibrosis... BACKGROUND: Bone marrow cells can differentiate into hepatocytes in a suitable microenvironment. This study was undertaken to investigate the effects of transplanted bone marrow stromal cells (BMSCs) on liver fibrosis in mice. METHODS: BMSCs were harvested and cultured from male BALB/c mice, then transplanted into female syngenic BALB/c mice via the portal vein. After partial hepatectomy, diethylnitrosamine (DEN) was administered to induce liver fibrosis. Controls received BMSCs and non-supplemented drinking water, the model group received DEN with their water, and the experimental group received BMSCs and DEN. Mice were killed after 3 months, and ALT, AST, hyaluronic acid (HA), and laminin (LN) in serum and hydroxyproline (Hyp) in the liver were assessed. Alpha-smooth muscle actin (alpha-SMA) in the liver was assessed by immunohistochemistry. Bone marrow-derived hepatocytes were identified by fluorescent in situ hybridization (FISH) in liver sections. RESULTS: BMSCs were shown to differentiate into hepatocyte-like phenotypes after hepatocyte growth factor treatment in vitro. Serum ALT, AST, HA, and LN were markedly reduced by transplanted BMSCs. Liver Hyp content and alpha-SMA staining in mice receiving BMSCs were lower than in the model group, consistent with altered liver pathology. FISH analysis revealed the presence of donor-derived hepatocytes in the injured liver after cross-gender mouse BMSC transplantation. After three months, about 10% of cells in the injured liver were bone marrow-derived. CONCLUSION: BMSCs transplanted via the portal vein can convert into hepatocytes to repair liver injury induced by DEN, restore liver function, and reduce liver fibrosis. 展开更多
关键词 bone marrow stromal cell HEPATOCYTE differentiation cell therapy liver fibrosis
下载PDF
The future of bone marrow stromal cell transplantation for the treatment of spinal cord injury 被引量:6
19
作者 Mitsuhiro Enomoto 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第3期383-384,共2页
Bone marrow stromal cell (BMSC) transplantation therapy is a promising approach for treating spinal cord injury (SCI), based on a number of experimental and clinical reports (Wright et al., 2011). BMSCs are a so... Bone marrow stromal cell (BMSC) transplantation therapy is a promising approach for treating spinal cord injury (SCI), based on a number of experimental and clinical reports (Wright et al., 2011). BMSCs are a source of neuroregenerative somatic stem cells that are without the potential for tumorigenicity. Although clinical studies of autologous BMSC transplantation have been reported in Asia (fiang et al., 2013; Yoon et al., 2007), in Japan, it is currently an uncommon procedure and highly controversial as well. This perspective paper provides an overview of the clinical effectiveness of BMSC trans- 191antation and a proposal to enhance its use as a viable therapy. 展开更多
关键词 BMSCS The future of bone marrow stromal cell transplantation for the treatment of spinal cord injury SCI bone cell
下载PDF
Study on the adoption of Schwann Cell Phenotype by Bone Marrow Stromal Cells in vitro and in vivo 被引量:4
20
作者 FU-QIANG ZHAO PEI-XUN ZHANG XIANG-JUN HE CHAN DU ZHONG-GUO FU DIAN-YING ZHANG BAO-GUO JIANG 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2005年第5期326-333,共8页
To explore the possibilities of bone marrow stromal cells (MSCs) to adopt Schwann cell phenotype in vitro and in vivo in SD rats. Methods MSCs were obtained from tibia and femur bone marrow and cultured in culture f... To explore the possibilities of bone marrow stromal cells (MSCs) to adopt Schwann cell phenotype in vitro and in vivo in SD rats. Methods MSCs were obtained from tibia and femur bone marrow and cultured in culture flasks. Beta-mercaptoethanol followed by retinoic acid, forskolin, basic-FGF, PDGF and heregulin were added to induce differentiation of MSCs'. Schwann cell markers, p75, S-100 and GFAP were used to discriminate induced properties of MSCs' by immunofluorescent staining. PKH-67-1abelled MSCs were transplanted into the mechanically injured rat sciatic nerve, and laser confocal microscopy was performed to localize the PKH67 labelled MSCs in the injured sciatic nerve two weeks after the operation. Fluorescence PKH67 attenuation rule was evaluated by flow cytometry in vitro. Results MSCs changed morphologically into cells resembling primary cultured Schwann cells after their induction in vitro. In vivo, a large number of MSCs were cumulated within the layer of epineurium around the injured nerve and expressed Schwann cell markers, p75, S- 100, and GFAP. Conclusion MSCs are able to support nerve fiber regeneration and re-myelination by taking on Schwann cell function, and can be potentially used as possible substitutable cells for artificial nerve conduits to promote nerve regeneration. 展开更多
关键词 bone marrow stromal cells DIFFERENTIATION Schwann cells
下载PDF
上一页 1 2 112 下一页 到第
使用帮助 返回顶部