Aim: To produce biologically active recombinant human (rh) ZP proteins in a human cell for use in sperm function tests. Methods: The human embryonic kidney cell line 293T was employed to produce rhZP1, rhZP2 and rhZP3...Aim: To produce biologically active recombinant human (rh) ZP proteins in a human cell for use in sperm function tests. Methods: The human embryonic kidney cell line 293T was employed to produce rhZP1, rhZP2 and rhZP3 proteins individually and together by co-expression. Presence of these proteins in the culture medium and cell lysate was assessed by Western blotting analysis. The effect of the recombinant proteins on the human AR was assessed. Results: RhZP2 and rhZP3 were secreted into the culture medium, whereas rhZPl was found only in the cell lysate. Interestingly, when all zona pellucida proteins were co-expressed in the same cells, rhZPl was also secreted into the culture medium. However, despite the presence of all three ZP proteins in sufficient concentration and evidence of heavy glycosylation on gel electrophoresis, biological activity to induce the AR was not observed. Conclusion: RhZP1, rhZP2 and rhZP3 were successfully expressed in the human embryonic kidney cell line 293T. It appears that an interaction amongst these proteins may be required for release of rhZPl from the cell. Although this approach is not satisfactory for producing active human ZP proteins, it makes a significant contribution to the understanding of the structural and functional characteristics of the ZP proteins.展开更多
Background and Aims: On November 24, 2009, Huu S. TIEU and Golden Sunrise Pharmaceutical, Inc. (Golden Sunrise) applied for the Technology and Innovation to be reviewed and evaluated by the U.S. Food and Drug Administ...Background and Aims: On November 24, 2009, Huu S. TIEU and Golden Sunrise Pharmaceutical, Inc. (Golden Sunrise) applied for the Technology and Innovation to be reviewed and evaluated by the U.S. Food and Drug Administration (FDA). In the review and evaluation, it was requested by Golden Sunrise designated the new indications for this application under Serious or Life-threatening conditions or diseases. Discussions followed with the FDA, Huu S. TIEU, and Golden Sunrise for FDA approval on new products and new indications on existing new Medical Technology and Innovation. It was agreed in Year-2015 that the FDA would take the request for new indications to the United States Congress to establish into FDA regulation and law. At that time the following was the FDA Guidance—“Emergency Use of a Test Article” is exempt from prior Institutional Review Board or Advisory Committee evaluation and approval, provided that such emergency use is reported to the Institutional Review Board within five working days after use. Expedited Institutional Review Board or Advisory Committee approval is not permitted in emergency use. There has been no funding to the authors for the writing or publication of this article. Methods: It was requested by Huu S. TIEU and Golden Sunrise in documents given to the FDA to have Serious or Life-threatening conditions or diseases indication be recognized by law. On August 08, 2015, the FDA responding to this request took the documentation produced by Golden Sunrise to the United States Congress on behalf of Golden Sunrise and Huu S. TIEU. This article encompasses the FDA regulatory method as well as the discussion and results of the establishment of the FDA and the 21<sup>st</sup> Century Cures Act. Results: On December 13, 2016, H.R.34—114<sup>th</sup> United States Congress (2015-2016) 21<sup>st</sup> Century CURES Act was signed into law by President Barack H. Obama which included the Serious or Life-threatening indication to be written into the CURES Act. In summary, the 21<sup>st</sup> Century Cures Act is a landmark piece of legislation that enjoyed broad bipartisan support in United States Congress. The main goals of the Act are impactful and should transform future cancer, neurologic, and precision medicine or drug research as well as aid individuals with mental health is intended to facilitate the prompt approval of new agents and devices, clinicians should be aware of the types of data behind an approval and take this into consideration when developing illnesses and opioid dependence. However, some of the wording within the CURES Act regarding the drug and device approval process may bring pause to health care providers including pharmacists. Although this wording and implementing care plans and counseling patients. The 21<sup>st</sup> Century Cures Act was incorporated into laws and regulations by the FDA under § 3072 of the Act grants the Commissioner of Food and Drugs the authority to appoint and set the annual rate of pay for outstanding and qualified candidates to scientific, technical, or professional positions that support the development, review, and regulation of medical products.展开更多
AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells d...AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow oytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis positive cells in hepatic demonstrated human Aluparenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)^+, CD34^+ and CD45^+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver. CONCLUSION: HRC liver provides a tool for investigating human liver regeneration in a humanized animal model.展开更多
Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a p...Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.展开更多
Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regu...Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.展开更多
Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ische...Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.展开更多
Although fossil fuels are widely used to meet energy needs,intensive research has been carried out in recent years on hydrogen production from renewable sources due to their decrease over time and environmental pollut...Although fossil fuels are widely used to meet energy needs,intensive research has been carried out in recent years on hydrogen production from renewable sources due to their decrease over time and environmental pollution concerns.Biofuel cell technology is one of the promising current technologies.It has been proven that various microorganisms produce energy through their natural metabolism,and that energy production is produced in biofuel cells by exoelectrogenic microorganisms that can transfer electrons to an electrode surface.Although it has been stated that employing human cells to generate energy is feasible,it is unknown whether doing so would enable the production of hydrogen.Within the scope of this perspective article,the issue of hydrogen production in bioelectrolysis cells using human cells will be discussed for the first time.Optimizing hydrogen production in bioelectrolysis cells using human cells is important in terms of contributing to hydrogen technologies.Within the scope of the article,promising human cell lines for hydrogen production are emphasized and hydrogen production potentials in bioelectrolysis cells using these cell lines are discussed.In conclusion,some human cells can be used for hydrogen gas production in bioelectrolysis cells due to their bioelectrochemical and metabolic properties.展开更多
Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogene...Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.展开更多
Erectile dysfunction (ED) is increasingly prevalent in Japan, exceeding 30%, and increasing with age. Unhealthy lifestyle habits, obesity, insufficient exercise, and smoking have been implicated in its pathogenesis, a...Erectile dysfunction (ED) is increasingly prevalent in Japan, exceeding 30%, and increasing with age. Unhealthy lifestyle habits, obesity, insufficient exercise, and smoking have been implicated in its pathogenesis, along with endothelial dysfunction of the corpora cavernosa and impaired blood flow to the penis considered underlying factors. However, the current treatments are limited to Phosphodiesterase-5 (PDE5) inhibitors. ED is the primary symptom of andropathy. This study reports the clinical efficacy of human stem cell-conditioned medium cream for ED treatment. Ten men without underlying diseases suspected of andropause with ED (mean age 43.2 ± 4.4 y, Hb 15.2 ± 0.6 gm/dL, AST/ALT 30.2/37.9 ± 12.4/14.0, eGFR 82.7 ± 12.4 mL/min/1.73 m2) were targeted. The cream was applied twice daily to the genital and scrotal areas. The erectile hardness score (EHS), International Index of Erectile Function-5 (IIEF-5), and Aging Male Symptoms (AMS) scale were used to evaluate the participants before and 30 days after use, and the results were compared using paired t-tests. The post-use qualitative opinions were collected through interviews. Significant improvements were observed compared to baseline in the IIEF-5 (11.8 ± 4.6→17.2 ± 5.1, P < 0.001), and AMS (46.3 ± 6.7→37.6 ± 5.3, P < 0.001) scores post cream use. EHS did not show a statistically significant difference, but a trend towards improvement was observed. Qualitative feedback included increased morning erection, improved maintenance of erection during intercourse, and reduced post work fatigue. Human stem cell-conditioned medium contains endothelial growth factors that potentially contribute to the improvement of ED and andropause by enhancing corporal endothelial function. Future studies should include control groups to further investigate the efficacy of these treatments.展开更多
AIM:To investigate the effects of vialinin A on viability of human retinal endothelial cells(HRECs)under high glucose condition and its potential mechanism.METHODS:The HRECs were divided into four groups:normal glucos...AIM:To investigate the effects of vialinin A on viability of human retinal endothelial cells(HRECs)under high glucose condition and its potential mechanism.METHODS:The HRECs were divided into four groups:normal glucose control group(NG,5 mmol/L D-glucose),high glucose group(HG,30 mmol/L D-glucose),HG+1μmol/L vialinin A group,and HG+5μmol/L vialinin A group.The cell viabilities were measured with cell counting kit-8(CCK-8)assay for proliferation,with scratch assay for migration,and tube formation,for evaluation of the impact of vialinin A on cellular behaviour.Real-time PCR and Western blotting were used to determine the expression level of vascular endothelial growth factor(VEGF).RESULTS:The proliferative capacity and migration of HRECs was reduced by 5μmol/L vialinin A in high glucose environment(both P<0.05).Vialinin A also inhibited highglucose-induced tube formation of HRECs.The expression level of VEGF and PI3K in HRECs was also significantly decreased by vialinin A(P<0.05).CONCLUSION:Vialinin A inhibits the cell viability of HRECs.It may serve as a potential target for anti-angiogenic therapy.展开更多
AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing end...AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.展开更多
In this work, lateral deformation of human eosinophil cell during the lateral indentation by an optically trapped microbead of diameter 4.5 µm is studied. The images were captured using a CCD camera and the Boltz...In this work, lateral deformation of human eosinophil cell during the lateral indentation by an optically trapped microbead of diameter 4.5 µm is studied. The images were captured using a CCD camera and the Boltzmann statistics method was used for force calibration. Using the Hertz model, we calculated and compared the elastic moduli resulting from the lateral force, showing that the differences are important and the force should be considered. Besides the lateral component, the setup also allows us to examine the lateral cell-bead interaction. The mean values of the properties obtained, in particular the elastic stiffness and the shear stiffness, were Eh = (37.76 ± 2.85) µN/m and Gh = (12.57 ± 0.32) µN/m. These results show that the lateral indentation can therefore be used as a routine method for cell study, because it enabled us to manipulate the cell without contact with the laser.展开更多
BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling ...BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling tissue function and regeneration.Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases.However,the lack of vasculature limits the utility of dental pulp organoids.AIM To improve survival and aid in recovery after stem cell transplantation,we demonstrated the three-dimensional(3D)self-assembly of adult stem cell-human dental pulp stem cells(hDPSCs)and endothelial cells(ECs)into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium(CM).METHODS During culture,primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM.The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids.The biological characteristics of the organoids were analysed,and the regulatory pathways associated with angiogenesis were studied.RESULTS The combination of these two agents resulted in prevascularized human dental pulp organoids(Vorganoids)that more closely resembled dental pulp tissue in terms of morphology and function.Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis.The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids.CONCLUSION In this innovative study,we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration,facilitating the development of clinical treatment strategies.展开更多
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en...AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.展开更多
Mutations in the small genome present in mitochondria often result in severe pathologies.Different genetic strategies have been explored,aiming to rescue such mutations.A number of these strategies were based on the c...Mutations in the small genome present in mitochondria often result in severe pathologies.Different genetic strategies have been explored,aiming to rescue such mutations.A number of these strategies were based on the capacity of human mitochondria to import RNAs from the cytosol and designed to repress the replication of the mutated genomes or to provide the organelles with wild-type versions of mutant transcripts.However,the mutant RNAs present in mitochondria turned out to be an obstacle to therapy and little attention has been devoted so far to their elimination.Here,we present the development of a strategy to knockdown mitochondrial RNAs in human cells using the transfer RNA-like structure of Brome mosaic virus or Tobacco mosaic virus as a shuttle to drive trans-cleaving ribozymes into the organelles in human cell lines.We obtained a specific knockdown of the targeted mitochondrial ATP6 mRNA,followed by a deep drop in ATP6 protein and a functional impairment of the oxidative phosphorylation chain.Our strategy provides a powerful approach to eliminate mutant organellar transcripts and to analyse the control and communication of the human organellar genetic system.展开更多
AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CC...AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CCK-8)and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assays were used to assess HLEC viability.HLEC viability/death was detected using a Calcein-AM/PI double staining kit;the annexin V-FITC method was used to detect HLEC apoptosis.The cytosolic reactive oxygen species(ROS)levels in HLECs were determined using a reactive species assay kit.The levels of malondialdehyde(MDA)and the antioxidant activities of total-superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px)were assessed in HLECs using their respective kits.RT-q PCR and Western blotting were used to measure m RNA and protein expression levels of the genes.RESULTS:Aluas RNA rescued methylglyoxal-induced apoptosis in HLECs and ameliorated both the methylglyoxalinduced decrease in Bcl-2 m RNA and the methylglyoxalinduced increase in Bax m RNA.In addition,Aluas RNA inhibited the methylglyoxal-induced increase in Alu sense RNA expression.Aluas RNA inhibited the production of ROS induced by methylglyoxal,restored T-SOD and GSHPx activity,and moderated the increase in MDA content after treatment with methylglyoxal.Aluas RNA significantly restored the methylglyoxal-induced down-regulation of Nrf2 gene and antioxidant defense genes,including glutathione peroxidase,heme oxygenase 1,γ-glutamylcysteine synthetase and quinone oxidoreductase 1.Aluas RNA ameliorated methylglyoxal-induced increases of the m RNA and protein expression of Keap1 that is the negative regulator of Nrf2.CONCLUSION:Aluas RNA reduces apoptosis induced by methylglyoxal by enhancing antioxidant defense.展开更多
BACKGROUND Progressive pancreaticβcell dysfunction is a fundamental aspect of the pathology underlying type 2 diabetes mellitus(T2DM).Recently,mesenchymal stem cell(MSC)transplantation has emerged as a new therapeuti...BACKGROUND Progressive pancreaticβcell dysfunction is a fundamental aspect of the pathology underlying type 2 diabetes mellitus(T2DM).Recently,mesenchymal stem cell(MSC)transplantation has emerged as a new therapeutic method due to its ability to promote the regeneration of pancreaticβcells.However,current studies have focused on its efficacy,and there are few clinical studies on its safety.AIM To evaluate the safety of human umbilical cord(hUC)-MSC infusion in T2DM treatment.METHODS An open-label and randomized phase 2 clinical trial was designed to evaluate the safety of hUC-MSC transplantation in T2DM in a Class A hospital.Ten patients in the placebo group received acellular saline intravenously once per week for 3 wk.Twenty-four patients in the hUC-MSC group received hUC-MSCs(1×106 cells/kg)intravenously once per week for 3 wk.Diabetic clinical symptoms and signs,laboratory findings,and imaging findings were evaluated weekly for the 1st mo and then at weeks 12 and 24 post-treatment.RESULTS No serious adverse events were observed during the 24-wk follow-up.Four patients(16.7%)in the hUC-MSC group experienced transient fever,which occurred within 24 h after the second or third infusion;this did not occur in any patients in the placebo group.One patient from the hUC-MSC group experienced hypoglycemic attacks within 1 mo after transplantation.Significantly lower lymphocyte levels(weeks 2 and 3)and thrombin coagulation time(week 2)were observed in the hUC-MSC group compared to those in the placebo group(all P<0.05).Significantly higher platelet levels(week 3),immunoglobulin levels(weeks 1,2,3,and 4),fibrinogen levels(weeks 2 and 3),D-dimer levels(weeks 1,2,3,4,12,and 24),and neutrophil-to-lymphocyte ratios(weeks 2 and 3)were observed in the hUC-MSC group compared to those in the placebo group(all P<0.05).There were no significant differences between the two groups for tumor markers(alpha-fetoprotein,carcinoembryonic antigen,and carbohydrate antigen 199)or blood fat.No liver damage or other side effects were observed on chest X-ray.CONCLUSION Our study suggested that hUC-MSC transplantation has good tolerance and high safety in the treatment of T2DM.It can improve human immunity and inhibit lymphocytes.Coagulation function should be monitored vigilantly for abnormalities.展开更多
Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we use...Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we used oxygen-glucose deprivation/reoxygenation in hDPSCs to mimic cell damage induced by ischemia/reperfusion.We found that miRNA-34a-5p(miR-34a) was elevated under oxygen-glucose deprivation/reoxygenation conditions in hDPSCs.Inhibition of miR-34a facilitated the prolife ration and antioxidant capacity and reduced the apoptosis of hDPSCs.Moreove r,dual-luciferase reporter gene assay showed WNT1and SIRT1 as the targets of miR-34a.In miR-34a knockdown cell lines,WNT1 suppression reduced cell prolife ration,and SIRT1 suppression decreased the antioxidant capacity.Togethe r,these results indicated that miR-34a regulates cell prolife ration and antioxidant stress via targeting WNT1 and SIRT1,respectively.For in vivo expe riments,we injected genetically modified hDPSCs(anti34a-hDPSCs) into the brains of mice.We found that anti34a-hDPSCs significantly inhibited apoptosis,reduced cerebral edema and cerebral infarct volume,and improved motor function in mice.This study provides new insights into the molecular mechanism of the cell prolife ration and antioxidant capacity of hDPSCs,and suggests a potential gene that can be targeted to improve the survival rate and efficacy of transplanted hDPSCs in brain after ischemic stroke.展开更多
BACKGROUND The immunosuppressive capacity of mesenchymal stem cells(MSCs)is dependent on the“license”of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1(P...BACKGROUND The immunosuppressive capacity of mesenchymal stem cells(MSCs)is dependent on the“license”of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1(PD-L1),which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases.In MSCs,interferon-gamma(IFN-γ)is a key inducer of PD-L1 expression,which is synergistically enhanced by tumor necrosis factor-alpha(TNF-α);however,the underlying mechanism is unclear.AIM To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis.METHODS We assessed PD-L1 expression in human umbilical-cord-derived MSCs(hUC-MSCs)induced by IFN-γand TNF-α,alone or in combination.Additionally,we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γalone or in combination with TNF-αinduces PD-L1 expression.Moreover,we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters.Finally,we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γand TNF-αin both an in vitro mixed lymphocyte culture assay,and in vivo in mice with dextran sulfate sodium-induced acute colitis.RESULTS Our results suggest that IFN-γinduction alone upregulates PD-L1 expression in hUC-MSCs while TNF-αalone does not,and that the co-induction of IFN-γand TNF-αpromotes higher expression of PD-L1.IFN-γinduces hUCMSCs to express PD-L1,in which IFN-γactivates the JAK/STAT1 signaling pathway,up-regulates the expression of the interferon regulatory factor 1(IRF1)transcription factor,promotes the binding of IRF1 and the PD-L1 gene promoter,and finally promotes PD-L1 mRNA.Although TNF-αalone did not induce PD-L1 expression in hUCMSCs,the addition of TNF-αsignificantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation.TNF-αupregulated IFN-γreceptor expression through activation of the nuclear factor kappa-B signaling pathway,which significantly enhanced IFN-γsignaling.Finally,co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation,and significantly ameliorate weight loss,mucosal damage,inflammatory cell infiltration,and up-regulation of inflammatory factors in colitis mice.CONCLUSION Overall,our results suggest that IFN-γand TNF-αenhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.展开更多
BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell(MSC)delivery,which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension(PAH)ther...BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell(MSC)delivery,which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension(PAH)therapy.Interestingly,the cystathionineγ-lyase(CSE)/hydrogen sulfide(H_(2)S)pathway may contribute to mediating ferroptosis.However,the influence of the CSE/H_(2)S pathway on ferroptosis in human umbilical cord MSCs(HUCMSCs)remains unclear.AIM To clarify whether the effect of HUCMSCs on vascular remodelling in PAH mice is affected by CSE/H_(2)S pathway-mediated ferroptosis,and to investigate the functions of the CSE/H_(2)S pathway in ferroptosis in HUCMSCs and the underlying mechanisms.METHODS Erastin and ferrostatin-1(Fer-1)were used to induce and inhibit ferroptosis,respectively.HUCMSCs were transfected with a vector to overexpress or inhibit expression of CSE.A PAH mouse model was established using 4-wk-old male BALB/c nude mice under hypoxic conditions,and pulmonary pressure and vascular remodelling were measured.The survival of HUCMSCs after delivery was observed by in vivo bioluminescence imaging.Cell viability,iron accumulation,reactive oxygen species production,cystine uptake,and lipid peroxidation in HUCMSCs were tested.Ferroptosis-related proteins and S-sulfhydrated Kelchlike ECH-associating protein 1(Keap1)were detected by western blot analysis.RESULTS In vivo,CSE overexpression improved cell survival after erastin-treated HUCMSC delivery in mice with hypoxiainduced PAH.In vitro,CSE overexpression improved H_(2)S production and ferroptosis-related indexes,such as cell viability,iron level,reactive oxygen species production,cystine uptake,lipid peroxidation,mitochondrial membrane density,and ferroptosis-related protein expression,in erastin-treated HUCMSCs.In contrast,in vivo,CSE inhibition decreased cell survival after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling in PAH mice.In vitro,CSE inhibition decreased H_(2)S levels and restored ferroptosis in Fer-1-treated HUCMSCs.Interestingly,upregulation of the CSE/H_(2)S pathway induced Keap1 S-sulfhydration,which contributed to the inhibition of ferroptosis.CONCLUSION Regulation of the CSE/H_(2)S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the suppressive effect on vascular remodelling in mice with hypoxia-induced PAH.Moreover,the protective effect of the CSE/H_(2)S pathway against ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor erythroid 2-related factor 2 signalling.The present study may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.展开更多
文摘Aim: To produce biologically active recombinant human (rh) ZP proteins in a human cell for use in sperm function tests. Methods: The human embryonic kidney cell line 293T was employed to produce rhZP1, rhZP2 and rhZP3 proteins individually and together by co-expression. Presence of these proteins in the culture medium and cell lysate was assessed by Western blotting analysis. The effect of the recombinant proteins on the human AR was assessed. Results: RhZP2 and rhZP3 were secreted into the culture medium, whereas rhZPl was found only in the cell lysate. Interestingly, when all zona pellucida proteins were co-expressed in the same cells, rhZPl was also secreted into the culture medium. However, despite the presence of all three ZP proteins in sufficient concentration and evidence of heavy glycosylation on gel electrophoresis, biological activity to induce the AR was not observed. Conclusion: RhZP1, rhZP2 and rhZP3 were successfully expressed in the human embryonic kidney cell line 293T. It appears that an interaction amongst these proteins may be required for release of rhZPl from the cell. Although this approach is not satisfactory for producing active human ZP proteins, it makes a significant contribution to the understanding of the structural and functional characteristics of the ZP proteins.
文摘Background and Aims: On November 24, 2009, Huu S. TIEU and Golden Sunrise Pharmaceutical, Inc. (Golden Sunrise) applied for the Technology and Innovation to be reviewed and evaluated by the U.S. Food and Drug Administration (FDA). In the review and evaluation, it was requested by Golden Sunrise designated the new indications for this application under Serious or Life-threatening conditions or diseases. Discussions followed with the FDA, Huu S. TIEU, and Golden Sunrise for FDA approval on new products and new indications on existing new Medical Technology and Innovation. It was agreed in Year-2015 that the FDA would take the request for new indications to the United States Congress to establish into FDA regulation and law. At that time the following was the FDA Guidance—“Emergency Use of a Test Article” is exempt from prior Institutional Review Board or Advisory Committee evaluation and approval, provided that such emergency use is reported to the Institutional Review Board within five working days after use. Expedited Institutional Review Board or Advisory Committee approval is not permitted in emergency use. There has been no funding to the authors for the writing or publication of this article. Methods: It was requested by Huu S. TIEU and Golden Sunrise in documents given to the FDA to have Serious or Life-threatening conditions or diseases indication be recognized by law. On August 08, 2015, the FDA responding to this request took the documentation produced by Golden Sunrise to the United States Congress on behalf of Golden Sunrise and Huu S. TIEU. This article encompasses the FDA regulatory method as well as the discussion and results of the establishment of the FDA and the 21<sup>st</sup> Century Cures Act. Results: On December 13, 2016, H.R.34—114<sup>th</sup> United States Congress (2015-2016) 21<sup>st</sup> Century CURES Act was signed into law by President Barack H. Obama which included the Serious or Life-threatening indication to be written into the CURES Act. In summary, the 21<sup>st</sup> Century Cures Act is a landmark piece of legislation that enjoyed broad bipartisan support in United States Congress. The main goals of the Act are impactful and should transform future cancer, neurologic, and precision medicine or drug research as well as aid individuals with mental health is intended to facilitate the prompt approval of new agents and devices, clinicians should be aware of the types of data behind an approval and take this into consideration when developing illnesses and opioid dependence. However, some of the wording within the CURES Act regarding the drug and device approval process may bring pause to health care providers including pharmacists. Although this wording and implementing care plans and counseling patients. The 21<sup>st</sup> Century Cures Act was incorporated into laws and regulations by the FDA under § 3072 of the Act grants the Commissioner of Food and Drugs the authority to appoint and set the annual rate of pay for outstanding and qualified candidates to scientific, technical, or professional positions that support the development, review, and regulation of medical products.
基金Supported by The National Natural Science Foundation of China, No. 30271177 and No. 39870676the Major Scienceand Technology Projects of Guangdong Province, No. B602+4 种基金the Natural Science Foundation of Guangdong Province, No.021903the Science and Technology Planning Project of Guangdong Province, No. 2009B060300008the Science and Technology Projects of Guangzhou City, No. 2002Z2E0121the Medical Scientific Research Foundation of Guangdong Province, No. A2007359the Science and Technology Talented Man Foundation of Outstanding Young and Middle-aged People of Southern Medical University,the Special Fund of Scientific Instrument Collaborative Share-net in Guangzhou, No. 2006176
文摘AIM: To examine the human hepatic parenchymal and stromal components in rat liver and the phenotypic changes of human cells in liver of human-rat chimera (HRC) generated by in utero transplantation of human cells during partial hepatectomy (PHx)-induced liver regeneration. METHODS: Human hepatic parenchymal and stromal components and phenotypic changes of human cells during liver regeneration were examined by flow oytometry, in situ hybridization and immunohistochemistry. RESULTS: ISH analysis positive cells in hepatic demonstrated human Aluparenchyma and stroma of recipient liver. Functional human hepatocytes generated in this model potentially constituted human hepatic functional units with the presence of donor-derived human endothelial and biliary duct cells in host liver. Alpha fetoprotein (AFP)^+, CD34^+ and CD45^+ cells were observed in the chimeric liver on day 10 after PHxinduced liver regeneration and then disappeared in PHx group, but not in non-PHx group, suggesting that dynamic phenotypic changes of human cells expressing AFP, CD34 and CD45 cells may occur during the chimeric liver regeneration. Additionally, immunostaining for human proliferating cell nuclear antigen (PCNA) showed that the number of PCNA-positive cells in the chimeric liver of PHx group was markedly increased, as compared to that of control group, indicating that donor-derived human cells are actively proliferated during PHx-induced regeneration of HRC liver. CONCLUSION: HRC liver provides a tool for investigating human liver regeneration in a humanized animal model.
基金supported by the National Key Research and Development Program of China,Nos.2017YFE0122900(to BH),2019YFA0110800(to WL),2019YFA0903802(to YW),2021YFA1101604(to LW),2018YFA0108502(to LF),and 2020YFA0804003(to JW)the National Natural Science Foundation of China,Nos.31621004(to WL,BH)and 31970821(to YW)+1 种基金CAS Project for Young Scientists in Basic Research,No.YSBR-041(to YW)Joint Funds of the National Natural Science Foundation of China,No.U21A20396(to BH)。
文摘Numerous studies have shown that cell replacement therapy can replenish lost cells and rebuild neural circuitry in animal models of Parkinson’s disease.Transplantation of midbrain dopaminergic progenitor cells is a promising treatment for Parkinson’s disease.However,transplanted cells can be injured by mechanical damage during handling and by changes in the transplantation niche.Here,we developed a one-step biomanufacturing platform that uses small-aperture gelatin microcarriers to produce beads carrying midbrain dopaminergic progenitor cells.These beads allow midbrain dopaminergic progenitor cell differentiation and cryopreservation without digestion,effectively maintaining axonal integrity in vitro.Importantly,midbrain dopaminergic progenitor cell bead grafts showed increased survival and only mild immunoreactivity in vivo compared with suspended midbrain dopaminergic progenitor cell grafts.Overall,our findings show that these midbrain dopaminergic progenitor cell beads enhance the effectiveness of neuronal cell transplantation.
基金supported by the National Key Research and Development Project of Stem Cell and Transformation Research,No.2019YFA0112100(to SF)the National Natural Science Foundation of China No.81930070(to SF)+1 种基金Multi-fund Investment Key Projects,No.21JCZDJC01100(to ZW)the Tianjin Science and Technology Planning Project,No.22JRRCRC00010(to SF)。
文摘Complete transverse injury of peripheral nerves is challenging to treat.Exosomes secreted by human umbilical cord mesenchymal stem cells are considered to play an important role in intercellular communication and regulate tissue regeneration.In previous studies,a collagen/hyaluronic acid sponge was shown to provide a suitable regeneration environment for Schwann cell proliferation and to promote axonal regeneration.This three-dimensional(3D)composite conduit contains a collagen/hyaluronic acid inner sponge enclosed in an electrospun hollow poly(lactic-co-glycolic acid)tube.However,whether there is a synergy between the 3D composite conduit and exosomes in the repair of peripheral nerve injury remains unknown.In this study,we tested a comprehensive strategy for repairing long-gap(10 mm)peripheral nerve injury that combined the 3D composite conduit with human umbilical cord mesenchymal stem cell-derived exosomes.Repair effectiveness was evaluated by sciatic functional index,sciatic nerve compound muscle action potential recording,recovery of muscle mass,measuring the cross-sectional area of the muscle fiber,Masson trichrome staining,and transmission electron microscopy of the regenerated nerve in rats.The results showed that transplantation of the 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes promoted peripheral nerve regeneration and restoration of motor function,similar to autograft transplantation.More CD31-positive endothelial cells were observed in the regenerated nerve after transplantation of the loaded conduit than after transplantation of the conduit without exosomes,which may have contributed to the observed increase in axon regeneration and distal nerve reconnection.Therefore,the use of a 3D composite conduit loaded with human umbilical cord mesenchymal stem cell-derived exosomes represents a promising cell-free therapeutic option for the treatment of peripheral nerve injury.
基金supported by the National Natural Science Foundation of China,No.82001604Guizhou Provincial Higher Education Science and Technology Innovation Team,No.[2023]072+1 种基金Guizhou Province Distinguished Young Scientific and Technological Talent Program,No.YQK[2023]040Guizhou Provincial Basic Research Program(Natural Science),No.ZK[2021]-368(all to LXiong),and Zunyi City Innovative Talent Team Training Plan,No.[2022]-2.
文摘Neonatal hypoxic-ischemic encephalopathy is often associated with permanent cerebral palsy,neurosensory impairments,and cognitive deficits,and there is no effective treatment for complications related to hypoxic-ischemic encephalopathy.The therapeutic potential of human placental chorionic plate-derived mesenchymal stem cells for various diseases has been explored.However,the potential use of human placental chorionic plate-derived mesenchymal stem cells for the treatment of neonatal hypoxic-ischemic encephalopathy has not yet been investigated.In this study,we injected human placental chorionic plate-derived mesenchymal stem cells into the lateral ventricle of a neonatal hypoxic-ischemic encephalopathy rat model and observed significant improvements in both cognitive and motor function.Protein chip analysis showed that interleukin-3 expression was significantly elevated in neonatal hypoxic-ischemic encephalopathy model rats.Following transplantation of human placental chorionic plate-derived mesenchymal stem cells,interleukin-3 expression was downregulated.To further investigate the role of interleukin-3 in neonatal hypoxic-ischemic encephalopathy,we established an in vitro SH-SY5Y cell model of hypoxic-ischemic injury through oxygen-glucose deprivation and silenced interleukin-3 expression using small interfering RNA.We found that the activity and proliferation of SH-SY5Y cells subjected to oxygen-glucose deprivation were further suppressed by interleukin-3 knockdown.Furthermore,interleukin-3 knockout exacerbated neuronal damage and cognitive and motor function impairment in rat models of hypoxic-ischemic encephalopathy.The findings suggest that transplantation of hpcMSCs ameliorated behavioral impairments in a rat model of hypoxic-ischemic encephalopathy,and this effect was mediated by interleukin-3-dependent neurological function.
文摘Although fossil fuels are widely used to meet energy needs,intensive research has been carried out in recent years on hydrogen production from renewable sources due to their decrease over time and environmental pollution concerns.Biofuel cell technology is one of the promising current technologies.It has been proven that various microorganisms produce energy through their natural metabolism,and that energy production is produced in biofuel cells by exoelectrogenic microorganisms that can transfer electrons to an electrode surface.Although it has been stated that employing human cells to generate energy is feasible,it is unknown whether doing so would enable the production of hydrogen.Within the scope of this perspective article,the issue of hydrogen production in bioelectrolysis cells using human cells will be discussed for the first time.Optimizing hydrogen production in bioelectrolysis cells using human cells is important in terms of contributing to hydrogen technologies.Within the scope of the article,promising human cell lines for hydrogen production are emphasized and hydrogen production potentials in bioelectrolysis cells using these cell lines are discussed.In conclusion,some human cells can be used for hydrogen gas production in bioelectrolysis cells due to their bioelectrochemical and metabolic properties.
基金the National Natural Science Foundation of China,No.82360148Guizhou Science&Technology Department,No.QKHPTRC2018-5636-2 and No.QKHPTRC2020-2201.
文摘Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.
文摘Erectile dysfunction (ED) is increasingly prevalent in Japan, exceeding 30%, and increasing with age. Unhealthy lifestyle habits, obesity, insufficient exercise, and smoking have been implicated in its pathogenesis, along with endothelial dysfunction of the corpora cavernosa and impaired blood flow to the penis considered underlying factors. However, the current treatments are limited to Phosphodiesterase-5 (PDE5) inhibitors. ED is the primary symptom of andropathy. This study reports the clinical efficacy of human stem cell-conditioned medium cream for ED treatment. Ten men without underlying diseases suspected of andropause with ED (mean age 43.2 ± 4.4 y, Hb 15.2 ± 0.6 gm/dL, AST/ALT 30.2/37.9 ± 12.4/14.0, eGFR 82.7 ± 12.4 mL/min/1.73 m2) were targeted. The cream was applied twice daily to the genital and scrotal areas. The erectile hardness score (EHS), International Index of Erectile Function-5 (IIEF-5), and Aging Male Symptoms (AMS) scale were used to evaluate the participants before and 30 days after use, and the results were compared using paired t-tests. The post-use qualitative opinions were collected through interviews. Significant improvements were observed compared to baseline in the IIEF-5 (11.8 ± 4.6→17.2 ± 5.1, P < 0.001), and AMS (46.3 ± 6.7→37.6 ± 5.3, P < 0.001) scores post cream use. EHS did not show a statistically significant difference, but a trend towards improvement was observed. Qualitative feedback included increased morning erection, improved maintenance of erection during intercourse, and reduced post work fatigue. Human stem cell-conditioned medium contains endothelial growth factors that potentially contribute to the improvement of ED and andropause by enhancing corporal endothelial function. Future studies should include control groups to further investigate the efficacy of these treatments.
基金Supported by the National Natural Science Foundation of China(No.81970830)Jiangsu Provincial Medical Innovation Team(No.CXTDA2017039).
文摘AIM:To investigate the effects of vialinin A on viability of human retinal endothelial cells(HRECs)under high glucose condition and its potential mechanism.METHODS:The HRECs were divided into four groups:normal glucose control group(NG,5 mmol/L D-glucose),high glucose group(HG,30 mmol/L D-glucose),HG+1μmol/L vialinin A group,and HG+5μmol/L vialinin A group.The cell viabilities were measured with cell counting kit-8(CCK-8)assay for proliferation,with scratch assay for migration,and tube formation,for evaluation of the impact of vialinin A on cellular behaviour.Real-time PCR and Western blotting were used to determine the expression level of vascular endothelial growth factor(VEGF).RESULTS:The proliferative capacity and migration of HRECs was reduced by 5μmol/L vialinin A in high glucose environment(both P<0.05).Vialinin A also inhibited highglucose-induced tube formation of HRECs.The expression level of VEGF and PI3K in HRECs was also significantly decreased by vialinin A(P<0.05).CONCLUSION:Vialinin A inhibits the cell viability of HRECs.It may serve as a potential target for anti-angiogenic therapy.
基金Supported by National Natural Science Foundation for Young Scientists of China(No.82101097)National Natural Science Foundation of China(No.82070937).
文摘AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.
文摘In this work, lateral deformation of human eosinophil cell during the lateral indentation by an optically trapped microbead of diameter 4.5 µm is studied. The images were captured using a CCD camera and the Boltzmann statistics method was used for force calibration. Using the Hertz model, we calculated and compared the elastic moduli resulting from the lateral force, showing that the differences are important and the force should be considered. Besides the lateral component, the setup also allows us to examine the lateral cell-bead interaction. The mean values of the properties obtained, in particular the elastic stiffness and the shear stiffness, were Eh = (37.76 ± 2.85) µN/m and Gh = (12.57 ± 0.32) µN/m. These results show that the lateral indentation can therefore be used as a routine method for cell study, because it enabled us to manipulate the cell without contact with the laser.
基金Supported by the Science and Technology Programme of Guangzhou City,No.202201020341.
文摘BACKGROUND The self-assembly of solid organs from stem cells has the potential to greatly expand the applicability of regenerative medicine.Stem cells can self-organise into microsized organ units,partially modelling tissue function and regeneration.Dental pulp organoids have been used to recapitulate the processes of tooth development and related diseases.However,the lack of vasculature limits the utility of dental pulp organoids.AIM To improve survival and aid in recovery after stem cell transplantation,we demonstrated the three-dimensional(3D)self-assembly of adult stem cell-human dental pulp stem cells(hDPSCs)and endothelial cells(ECs)into a novel type of spheroid-shaped dental pulp organoid in vitro under hypoxia and conditioned medium(CM).METHODS During culture,primary hDPSCs were induced to differentiate into ECs by exposing them to a hypoxic environment and CM.The hypoxic pretreated hDPSCs were then mixed with ECs at specific ratios and conditioned in a 3D environment to produce prevascularized dental pulp organoids.The biological characteristics of the organoids were analysed,and the regulatory pathways associated with angiogenesis were studied.RESULTS The combination of these two agents resulted in prevascularized human dental pulp organoids(Vorganoids)that more closely resembled dental pulp tissue in terms of morphology and function.Single-cell RNA sequencing of dental pulp tissue and RNA sequencing of Vorganoids were integrated to analyse key regulatory pathways associated with angiogenesis.The biomarkers forkhead box protein O1 and fibroblast growth factor 2 were identified to be involved in the regulation of Vorganoids.CONCLUSION In this innovative study,we effectively established an in vitro model of Vorganoids and used it to elucidate new mechanisms of angiogenesis during regeneration,facilitating the development of clinical treatment strategies.
基金Supported by Tianjin Key Medical Discipline Specialty Construction Project(No.TJXZDXK-016A)Science Foundation of Tianjin Eye Hospital(No.YKZD1901).
文摘AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway.
基金supported by a grant from the Polish Medical Research Agency(2021/ABM/05/00004)The research was further funded by grants from the Polish National Science Centre(2016/21/N/NZ1/00564)+2 种基金the French State Program‘Investments for the future’(LABEX ANR-11-LABX-0057_MITOCROSS and ANR-10-LABX-0040-SPS)the French National Research Agency(ANR-06-MRAR-037-02 and ANR-09-BLAN-0240-01)R.V.was supported by a fellowship from CNRS and the French Région Alsace.
文摘Mutations in the small genome present in mitochondria often result in severe pathologies.Different genetic strategies have been explored,aiming to rescue such mutations.A number of these strategies were based on the capacity of human mitochondria to import RNAs from the cytosol and designed to repress the replication of the mutated genomes or to provide the organelles with wild-type versions of mutant transcripts.However,the mutant RNAs present in mitochondria turned out to be an obstacle to therapy and little attention has been devoted so far to their elimination.Here,we present the development of a strategy to knockdown mitochondrial RNAs in human cells using the transfer RNA-like structure of Brome mosaic virus or Tobacco mosaic virus as a shuttle to drive trans-cleaving ribozymes into the organelles in human cell lines.We obtained a specific knockdown of the targeted mitochondrial ATP6 mRNA,followed by a deep drop in ATP6 protein and a functional impairment of the oxidative phosphorylation chain.Our strategy provides a powerful approach to eliminate mutant organellar transcripts and to analyse the control and communication of the human organellar genetic system.
基金Supported by the National Natural Science Foundation of China(No.81771499)the Natural Science Foundation of Hebei Province,China(No.H2018206099,No.H2021206460)。
文摘AIM:To determine whether an antisense RNA corresponding to the human Alu transposable element(Aluas RNA)can protect human lens epithelial cells(HLECs)from methylglyoxal-induced apoptosis.METHODS:Cell counting kit-8(CCK-8)and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT)assays were used to assess HLEC viability.HLEC viability/death was detected using a Calcein-AM/PI double staining kit;the annexin V-FITC method was used to detect HLEC apoptosis.The cytosolic reactive oxygen species(ROS)levels in HLECs were determined using a reactive species assay kit.The levels of malondialdehyde(MDA)and the antioxidant activities of total-superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px)were assessed in HLECs using their respective kits.RT-q PCR and Western blotting were used to measure m RNA and protein expression levels of the genes.RESULTS:Aluas RNA rescued methylglyoxal-induced apoptosis in HLECs and ameliorated both the methylglyoxalinduced decrease in Bcl-2 m RNA and the methylglyoxalinduced increase in Bax m RNA.In addition,Aluas RNA inhibited the methylglyoxal-induced increase in Alu sense RNA expression.Aluas RNA inhibited the production of ROS induced by methylglyoxal,restored T-SOD and GSHPx activity,and moderated the increase in MDA content after treatment with methylglyoxal.Aluas RNA significantly restored the methylglyoxal-induced down-regulation of Nrf2 gene and antioxidant defense genes,including glutathione peroxidase,heme oxygenase 1,γ-glutamylcysteine synthetase and quinone oxidoreductase 1.Aluas RNA ameliorated methylglyoxal-induced increases of the m RNA and protein expression of Keap1 that is the negative regulator of Nrf2.CONCLUSION:Aluas RNA reduces apoptosis induced by methylglyoxal by enhancing antioxidant defense.
基金Shenzhen Science and Technology Innovation Committee Projects,No.JCYJ20170816105416349Shenzhen High-Level Hospital Construction Fund,Shenzhen Key Medical Discipline Construction Fund,No.SZXK010.
文摘BACKGROUND Progressive pancreaticβcell dysfunction is a fundamental aspect of the pathology underlying type 2 diabetes mellitus(T2DM).Recently,mesenchymal stem cell(MSC)transplantation has emerged as a new therapeutic method due to its ability to promote the regeneration of pancreaticβcells.However,current studies have focused on its efficacy,and there are few clinical studies on its safety.AIM To evaluate the safety of human umbilical cord(hUC)-MSC infusion in T2DM treatment.METHODS An open-label and randomized phase 2 clinical trial was designed to evaluate the safety of hUC-MSC transplantation in T2DM in a Class A hospital.Ten patients in the placebo group received acellular saline intravenously once per week for 3 wk.Twenty-four patients in the hUC-MSC group received hUC-MSCs(1×106 cells/kg)intravenously once per week for 3 wk.Diabetic clinical symptoms and signs,laboratory findings,and imaging findings were evaluated weekly for the 1st mo and then at weeks 12 and 24 post-treatment.RESULTS No serious adverse events were observed during the 24-wk follow-up.Four patients(16.7%)in the hUC-MSC group experienced transient fever,which occurred within 24 h after the second or third infusion;this did not occur in any patients in the placebo group.One patient from the hUC-MSC group experienced hypoglycemic attacks within 1 mo after transplantation.Significantly lower lymphocyte levels(weeks 2 and 3)and thrombin coagulation time(week 2)were observed in the hUC-MSC group compared to those in the placebo group(all P<0.05).Significantly higher platelet levels(week 3),immunoglobulin levels(weeks 1,2,3,and 4),fibrinogen levels(weeks 2 and 3),D-dimer levels(weeks 1,2,3,4,12,and 24),and neutrophil-to-lymphocyte ratios(weeks 2 and 3)were observed in the hUC-MSC group compared to those in the placebo group(all P<0.05).There were no significant differences between the two groups for tumor markers(alpha-fetoprotein,carcinoembryonic antigen,and carbohydrate antigen 199)or blood fat.No liver damage or other side effects were observed on chest X-ray.CONCLUSION Our study suggested that hUC-MSC transplantation has good tolerance and high safety in the treatment of T2DM.It can improve human immunity and inhibit lymphocytes.Coagulation function should be monitored vigilantly for abnormalities.
基金supported by the National Natural Science Foundation of China,Nos.81971870 and 82172173 (both to ML)。
文摘Human dental pulp stem cells(hDPSCs) promote recovery after ischemic stro ke;however,the therapeutic efficacy is limited by the poor survival of transplanted cells.For in vitro expe riments in the present study,we used oxygen-glucose deprivation/reoxygenation in hDPSCs to mimic cell damage induced by ischemia/reperfusion.We found that miRNA-34a-5p(miR-34a) was elevated under oxygen-glucose deprivation/reoxygenation conditions in hDPSCs.Inhibition of miR-34a facilitated the prolife ration and antioxidant capacity and reduced the apoptosis of hDPSCs.Moreove r,dual-luciferase reporter gene assay showed WNT1and SIRT1 as the targets of miR-34a.In miR-34a knockdown cell lines,WNT1 suppression reduced cell prolife ration,and SIRT1 suppression decreased the antioxidant capacity.Togethe r,these results indicated that miR-34a regulates cell prolife ration and antioxidant stress via targeting WNT1 and SIRT1,respectively.For in vivo expe riments,we injected genetically modified hDPSCs(anti34a-hDPSCs) into the brains of mice.We found that anti34a-hDPSCs significantly inhibited apoptosis,reduced cerebral edema and cerebral infarct volume,and improved motor function in mice.This study provides new insights into the molecular mechanism of the cell prolife ration and antioxidant capacity of hDPSCs,and suggests a potential gene that can be targeted to improve the survival rate and efficacy of transplanted hDPSCs in brain after ischemic stroke.
基金Supported by the National Natural Science Foundation of China,No.81871568,No.32100643COVID-19 Infection and Prevention Emergency Special Project of Chongqing Education Commission,No.KYYJ202009.
文摘BACKGROUND The immunosuppressive capacity of mesenchymal stem cells(MSCs)is dependent on the“license”of several proinflammatory factors to express immunosuppressive factors such as programmed cell death 1 ligand 1(PD-L1),which determines the clinical therapeutic efficacy of MSCs for inflammatory or immune diseases.In MSCs,interferon-gamma(IFN-γ)is a key inducer of PD-L1 expression,which is synergistically enhanced by tumor necrosis factor-alpha(TNF-α);however,the underlying mechanism is unclear.AIM To reveal the mechanism of pretreated MSCs express high PD-L1 and explore the application of pretreated MSCs in ulcerative colitis.METHODS We assessed PD-L1 expression in human umbilical-cord-derived MSCs(hUC-MSCs)induced by IFN-γand TNF-α,alone or in combination.Additionally,we performed signal pathway inhibitor experiments as well as RNA interference experiments to elucidate the molecular mechanism by which IFN-γalone or in combination with TNF-αinduces PD-L1 expression.Moreover,we used luciferase reporter gene experiments to verify the binding sites of the transcription factors of each signal transduction pathway to the targeted gene promoters.Finally,we evaluated the immunosuppressive capacity of hUC-MSCs treated with IFN-γand TNF-αin both an in vitro mixed lymphocyte culture assay,and in vivo in mice with dextran sulfate sodium-induced acute colitis.RESULTS Our results suggest that IFN-γinduction alone upregulates PD-L1 expression in hUC-MSCs while TNF-αalone does not,and that the co-induction of IFN-γand TNF-αpromotes higher expression of PD-L1.IFN-γinduces hUCMSCs to express PD-L1,in which IFN-γactivates the JAK/STAT1 signaling pathway,up-regulates the expression of the interferon regulatory factor 1(IRF1)transcription factor,promotes the binding of IRF1 and the PD-L1 gene promoter,and finally promotes PD-L1 mRNA.Although TNF-αalone did not induce PD-L1 expression in hUCMSCs,the addition of TNF-αsignificantly enhanced IFN-γ-induced JAK/STAT1/IRF1 activation.TNF-αupregulated IFN-γreceptor expression through activation of the nuclear factor kappa-B signaling pathway,which significantly enhanced IFN-γsignaling.Finally,co-induced hUC-MSCs have a stronger inhibitory effect on lymphocyte proliferation,and significantly ameliorate weight loss,mucosal damage,inflammatory cell infiltration,and up-regulation of inflammatory factors in colitis mice.CONCLUSION Overall,our results suggest that IFN-γand TNF-αenhance both the immunosuppressive ability of hUC-MSCs and their efficacy in ulcerative colitis by synergistically inducing high expression of PD-L1.
基金the Natural Science Foundation of Shandong Province of China,No.ZR2021QH179 and ZR2020MH014.
文摘BACKGROUND Ferroptosis can induce low retention and engraftment after mesenchymal stem cell(MSC)delivery,which is considered a major challenge to the effectiveness of MSC-based pulmonary arterial hypertension(PAH)therapy.Interestingly,the cystathionineγ-lyase(CSE)/hydrogen sulfide(H_(2)S)pathway may contribute to mediating ferroptosis.However,the influence of the CSE/H_(2)S pathway on ferroptosis in human umbilical cord MSCs(HUCMSCs)remains unclear.AIM To clarify whether the effect of HUCMSCs on vascular remodelling in PAH mice is affected by CSE/H_(2)S pathway-mediated ferroptosis,and to investigate the functions of the CSE/H_(2)S pathway in ferroptosis in HUCMSCs and the underlying mechanisms.METHODS Erastin and ferrostatin-1(Fer-1)were used to induce and inhibit ferroptosis,respectively.HUCMSCs were transfected with a vector to overexpress or inhibit expression of CSE.A PAH mouse model was established using 4-wk-old male BALB/c nude mice under hypoxic conditions,and pulmonary pressure and vascular remodelling were measured.The survival of HUCMSCs after delivery was observed by in vivo bioluminescence imaging.Cell viability,iron accumulation,reactive oxygen species production,cystine uptake,and lipid peroxidation in HUCMSCs were tested.Ferroptosis-related proteins and S-sulfhydrated Kelchlike ECH-associating protein 1(Keap1)were detected by western blot analysis.RESULTS In vivo,CSE overexpression improved cell survival after erastin-treated HUCMSC delivery in mice with hypoxiainduced PAH.In vitro,CSE overexpression improved H_(2)S production and ferroptosis-related indexes,such as cell viability,iron level,reactive oxygen species production,cystine uptake,lipid peroxidation,mitochondrial membrane density,and ferroptosis-related protein expression,in erastin-treated HUCMSCs.In contrast,in vivo,CSE inhibition decreased cell survival after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling in PAH mice.In vitro,CSE inhibition decreased H_(2)S levels and restored ferroptosis in Fer-1-treated HUCMSCs.Interestingly,upregulation of the CSE/H_(2)S pathway induced Keap1 S-sulfhydration,which contributed to the inhibition of ferroptosis.CONCLUSION Regulation of the CSE/H_(2)S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the suppressive effect on vascular remodelling in mice with hypoxia-induced PAH.Moreover,the protective effect of the CSE/H_(2)S pathway against ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor erythroid 2-related factor 2 signalling.The present study may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.