Collagen is a major extracellular matrix protein.Given the potential anti-inflammatory and antioxidant profiles of these bioactive compounds,there has been increasing interest in using collagen derived peptides and pe...Collagen is a major extracellular matrix protein.Given the potential anti-inflammatory and antioxidant profiles of these bioactive compounds,there has been increasing interest in using collagen derived peptides and peptide-rich collagen hydrolysates for skin health,due to their immunomodulatory,antioxidant and proliferative effects on dermal fibroblasts.However,all hydrolysates are not equally effective in exerting the beneficial effects;hence,further research is needed to determine the factors that improve the therapeutic applicability of such preparations.We used different enzymatic conditions to generate a number of different collagen hydrolysates with distinct peptide profiles.We found that the use of two rather than one enzyme for hydrolysis generates a greater abundance of low molecular weight peptides with consequent improvement in bioactive properties.Testing these hydrolysates on human dermal fibroblasts showed distinct actions on inflammatory changes,oxidative stress,type I collagen synthesis and cellular proliferation.Our findings suggest that different enzymatic conditions affect the peptide profile of hydrolysates and differentially regulate their biological activities and potential protective responses on dermal fibroblasts.展开更多
To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethy...To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydro-genase (LDH) were tested to measure cell viability. Enzymes including superoxide dismutase (SOD), glu-tathione peroxidase (GSH-PX), catalase (CAT) and xanthine oxidase (XOD) were determined biochemically. Total antioxidative capacity (T-AOC) and anti-superoxide anion capacity (A-SAC) were also determined. Ultrastructure of fibroblasts was observed under transmission electron microscope. The results showed that: UVB (1.176×10-4 J/cm2) suppressed the growth of fibroblasts and the introduction of PCF (0.25%-l%) before UVB reduced the suppression in a concentration-dependent manner. PCF could enhance the activities of SOD, GSH-PX and T-AOC as well as A-SAC. Also PCF could inhibit XOD activity, while it did not affect CAT activity. Ultrastructure of fibroblasts were damaged after UVB irradiation, concentration-dependent PCF reduced the destructive effect of UVB on cells. These results indicated that PCF can protect human dermal fibroblasts from being harmed by UVB irradiation via its antioxidant pro-erty.展开更多
Objective:To investigate the anti-senescence effect of 3-bromo-4,5-dihydroxybenzaldehyde(BDB)from Polysiphonia morrowii Harvey in human dermal fibroblasts(HDF).Methods:HDF were subjected to treatment of BDB and then t...Objective:To investigate the anti-senescence effect of 3-bromo-4,5-dihydroxybenzaldehyde(BDB)from Polysiphonia morrowii Harvey in human dermal fibroblasts(HDF).Methods:HDF were subjected to treatment of BDB and then treated with hydrogen peroxide(H2O2)to induce premature senescence.Senescence-associatedβ-galactosidase(SA-β-gal)activity in HDF was determined using the SA-β-gal staining method.Intracellular reactive oxygen species(ROS)production was measured using the 2’,7’-dichlorodihydrofluorescein diacetate assay.Western blotting assay was performed to assess the level of antioxidant enzyme glutathione peroxidase 1(GPX1).In addition,intracellular collagen and collagenase contents were analyzed using the respective ELISA kits.Elastase activity in HDF supernatants was measured from p-nitroaniline release and normalized using total protein content.Results:Treatment of HDF with H2O2 increased the activity of SA-β-gal,but BDB pre-treatment resulted in the reduction of SA-β-gal activity.Moreover,BDB significantly reduced H2O2-induced intracellular ROS production.BDB also markedly increased the level of GPX1,which was inhibited by 400μM of H2O2.Furthermore,in in vitro study,BDB significantly increased intracellular collagen content and decreased matrix metalloproteinase-1 and elastase activities in HDF.Conclusions:Our results demonstrate that BDB shows antisenescence and anti-wrinkle activities in vitro.展开更多
Objective:To investigate the potential anti-aging mechanism of9-hydroxy-6,7-dimethoxydalbergiquinol(HDDQ)on hydrogen peroxide(H2O2)-induced oxidative stress in human dermal fibroblasts(HDFs).Methods:The effect of HDDQ...Objective:To investigate the potential anti-aging mechanism of9-hydroxy-6,7-dimethoxydalbergiquinol(HDDQ)on hydrogen peroxide(H2O2)-induced oxidative stress in human dermal fibroblasts(HDFs).Methods:The effect of HDDQ on cell viability was assessed by MTT assay,and the effects of HDDQ on senescence-like phenotypes were determined by senescence-associatedβ-galactosidase(SA-β-gal)staining,Western blotting analysis,and a cell proliferation assay.The expression level and activity of sirtuin-1(SIRT1)induced by HDDQ were also measured.Results:HDDQ reversed senescence-like phenotypes in the oxidant-challenged model,through reducing SA-β-gal activity and promoting cell growth.Meanwhile,decreases in ac-p53,p21Cip1/WAF1,and p16Ink4a and an increase in p Rb were observed.HDDQ induced the expression of SIRT1 in a concentration-and time-dependent manner.Moreover,HDDQ inhibited H2O2-induced phosphorylation of Akt by SIRT1 up-regulation and reduced SA-β-gal staining.Conclusions:HDDQ inhibits H2O2-induced premature senescence and upregulation of SIRT1 expression plays a vital role in the inhibition of the senescence phenotype in HDFs.展开更多
Fanconi anemia (FA) is a fatal heterogeneous autosomal recessive disorder, characterized by progressive bone marrow failure, congenital defect and cancer predisposition. Cell culture from FA fibroblast (FAF) displays ...Fanconi anemia (FA) is a fatal heterogeneous autosomal recessive disorder, characterized by progressive bone marrow failure, congenital defect and cancer predisposition. Cell culture from FA fibroblast (FAF) displays certain abnormalities as compared to normal human dermal fibroblast (NHDF). This prompted us to investigate the effect of a specific nutrient mixture (NM) containing ascorbic acid, lysine, proline and green tea extract, which has demonstrated a broad spectrum of pharmacological activities, on FAF compared to NHDF. We investigated the in vitro effect of NM on FAF and NHDF cell proliferation by MTT assay, MMPs secretion by zymography, morphology by H&E staining and apoptosis by green caspase assay. FAF (FA-A: PD20, FA-A: PD220) and NHDF were cultured in modified Dulbecco Eagle media. At near confluence, the cells were treated with different concentrations of NM (0, 50, 100, 250, 500 and 1000 μg/ml) in triplicate. The cells were also treated with PMA to induce MMP-9 activity. NM had no effect on FAF cell viability in both cell lines compared to control. In contrast NM exhibited 20% at 50 and 100, 50% at 250, 60% at 500 and 70% toxicity at 1000 μg/ml on NHDF cells. Zymography demonstrated MMP-2 and MMP-9 on PMA stimulation in FAF and NM inhibited the activity of both MMP-2 and MMP-9 in a dose response fashion with total block at 500 μg/ml. In contrast, NHDF exhibited only MMP-2, both active and inactive forms, and NM inhibited their activities in a dose-dependent manner with total block at 1000 μg/ml. H&E staining did not indicate any morphological changes in FAF nor induced apoptosis at higher concentrations, as seen by caspases assay. However, although no morphological changes in NHDF were noted up to NM 100 μg/ml, progressive changes in cell shrinkage, rounding and nuclear condensation, pertaining to apoptosis, were observed at higher concentrations. These changes were consistent with the results from the green caspases apoptosis assay. Our data demonstrate that NM exhibited different responses toward FAF and NHDF. This may in part be due to elevated chromosomal break, deletion and hypersensitivity to cross linking agents, a DNA repair disorder in FAF that is lacking in NHDF.展开更多
Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on th...Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investi- gation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H2O2). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-dch extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H2O2 in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H2O2, but ap- plication oat peptides with H2O2 at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H2O2-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H2O2-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.展开更多
The purpose of this article was to explore the effects of gold nanoparticles(GNPs)and silver nano-particles(SNPs)with different cytotoxicities on human dermal fibroblasts(HDFs)at the metabolic level.First,~20 nm of GN...The purpose of this article was to explore the effects of gold nanoparticles(GNPs)and silver nano-particles(SNPs)with different cytotoxicities on human dermal fibroblasts(HDFs)at the metabolic level.First,~20 nm of GNPs and SNPs were prepared,and their effects on the proliferation of HDFs were evaluated.Then,a metabolomics technique was used to analyse the effects of GNPs and SNPs on the expression profiles of metabolites in HDFs after 4,8 and 24h of treatment.Furthermore,the key metabolites and key metabolic pathways involved in the interaction of GNPs and SNPs with HDFs were identified through expression pattern analysis and metabolic pathway analysis of differentially expressed metabolites and were finally verified by experiments.The results of the cytotoxicity experiments showed that there was no cytotoxicity after the treatment of GNPs for 72 h,while the cytotoxicity of the SNPs reached grade 1 after 72 h.By using metabolomics analysis,29,30 and 27 metabolites were shown to be differentially expressed in HDFs after GNP treatment,while SNPs induced the differential expression of 13,33 and 22 metabolites after 4,8 and 24h of treatment,respectively.Six and four candidate key metabolites in the GNP and SNP groups were identified by expression pattern analysis and metabolic pathway analysis,respec-tively.The key metabolic pathways in the GNP and SNP groups were identified as the glutathione metabolic pathway(the key metabolite of which was glutathione)and the citrate cycle pathway(the key metabolite of which was malic acid).Based on the experiments used to verify the key metabolites and key metabolic pathways,it was found that the increase in glutathione after GNP treatment might trigger an oxidative stress protection mechanism and thus avoid cytotoxicity.After exposure to SNPs,the citric acid content was increased,mainly through the citrate cycle path-way,thereby inhibiting the synthesis of malic acid to affect the formation of ATP and finally leading to cytotoxicity.展开更多
As a hallmark of skin aging,senescent human dermal fibroblasts(HDFs)are known to lose the ability to divide.However,they can still interact with their cellular environment and the surrounding matrix.As the skin ages,t...As a hallmark of skin aging,senescent human dermal fibroblasts(HDFs)are known to lose the ability to divide.However,they can still interact with their cellular environment and the surrounding matrix.As the skin ages,the progressive slowing down of HDFs function decreases the skin’s structural integrity,which is more serious than if there is the dermal collagen matrix eroded.This leads to matters of the unbalanced barrier under the skin,skin fragility,inadequate wound healing,as well as other cosmetic issues.It is also well documented that skin aging comes with significant stiffness increases.Therefore,understanding the interactions between HDFs and the surrounding microenvironments during senescence may provide insights into skin aging.Here we aim to inves-tigate matrix stiffness’effect on HDF senescence and elucidate possible mechanisms that make HDFs senescent.In our experiments,HDFs were cultivated on Polydimethylsiloxane(PDMS)with various stiffnesses and exposed to UV light to trigger senescence.Results show that HDFs are significantly affected by senescence when cultured on a matrix with stiffness.However,the cells are not significantly affected when cultured on a low stiffness matrix.The following characterization revealed cells cultured on stiffsubstrates under UV exposure had stimu-lated the nucleus factor kappa-B(NF-κB)activation.In contrast,cells on a matrix of softness only displayed low activation of NF-κB.NF-κB activity suppression with ammonium pyrrolidine dithiocarbamate(PDTC)decreases UV-induced HDFs senescence on stiffsubstrates.Taken together,we demonstrated that soft matrix defends HDFs against ultraviolet-induced senescence by inhibiting the activation of NF-κB.展开更多
This paper sets out to demonstrate that scraping of the flat dorsal surface of human dermis with a scalpel blade and cell plating without centrifugation can lead to the recognition and identification of the individual...This paper sets out to demonstrate that scraping of the flat dorsal surface of human dermis with a scalpel blade and cell plating without centrifugation can lead to the recognition and identification of the individual packing micro pattern of dermal reticular fibroblasts at confluence. The characteristic alignment of papillary and reticular fibroblasts at right angles to each other led to the positive identification of reticular fibroblasts. A non-enzymatic means of sub-culturing (passaging), which yields fully functional, healthy cells with normal, phenotypic morphology is also described. Implications for published subcutaneous wound healing studies are discussed as well as the confluent reticular fibroblast configuration, interpreted as ananatomic site identity code,which may be the address of a specific fibroblast gene pattern expression.展开更多
基金This study was funded by grants from Alberta Livestock and Meat Agency(ALMA)and the Natural Sciences and Engineering Research Council(NSERC)of Canada to JW.The funders had no role in the study design,data collection and analysis,decision to publish or preparation of this manuscript。
文摘Collagen is a major extracellular matrix protein.Given the potential anti-inflammatory and antioxidant profiles of these bioactive compounds,there has been increasing interest in using collagen derived peptides and peptide-rich collagen hydrolysates for skin health,due to their immunomodulatory,antioxidant and proliferative effects on dermal fibroblasts.However,all hydrolysates are not equally effective in exerting the beneficial effects;hence,further research is needed to determine the factors that improve the therapeutic applicability of such preparations.We used different enzymatic conditions to generate a number of different collagen hydrolysates with distinct peptide profiles.We found that the use of two rather than one enzyme for hydrolysis generates a greater abundance of low molecular weight peptides with consequent improvement in bioactive properties.Testing these hydrolysates on human dermal fibroblasts showed distinct actions on inflammatory changes,oxidative stress,type I collagen synthesis and cellular proliferation.Our findings suggest that different enzymatic conditions affect the peptide profile of hydrolysates and differentially regulate their biological activities and potential protective responses on dermal fibroblasts.
基金This work was supported by the National Science Foundation of China (NO.39970638)and the Science and Technology Bureau of Qingdao (NO.2001-28-50)
文摘To investigate the effect of polypeptide from Chlamys farreri (PCF) on NHDF in vitro, we modeled oxidative damage on normal human dermal fibroblasts (NHDF) exposed to ultraviolet B (UVB). In this study, 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydro-genase (LDH) were tested to measure cell viability. Enzymes including superoxide dismutase (SOD), glu-tathione peroxidase (GSH-PX), catalase (CAT) and xanthine oxidase (XOD) were determined biochemically. Total antioxidative capacity (T-AOC) and anti-superoxide anion capacity (A-SAC) were also determined. Ultrastructure of fibroblasts was observed under transmission electron microscope. The results showed that: UVB (1.176×10-4 J/cm2) suppressed the growth of fibroblasts and the introduction of PCF (0.25%-l%) before UVB reduced the suppression in a concentration-dependent manner. PCF could enhance the activities of SOD, GSH-PX and T-AOC as well as A-SAC. Also PCF could inhibit XOD activity, while it did not affect CAT activity. Ultrastructure of fibroblasts were damaged after UVB irradiation, concentration-dependent PCF reduced the destructive effect of UVB on cells. These results indicated that PCF can protect human dermal fibroblasts from being harmed by UVB irradiation via its antioxidant pro-erty.
基金supported by Korea Basic Science Institute(grant number C39260)National Research Foundation of Korea(NRF)funded by the Korea government(MSIT)(grant number NRF-2019R1C1C1005608)a research grant from the Korea Institute of Ocean Science and Technology(PE99822)
文摘Objective:To investigate the anti-senescence effect of 3-bromo-4,5-dihydroxybenzaldehyde(BDB)from Polysiphonia morrowii Harvey in human dermal fibroblasts(HDF).Methods:HDF were subjected to treatment of BDB and then treated with hydrogen peroxide(H2O2)to induce premature senescence.Senescence-associatedβ-galactosidase(SA-β-gal)activity in HDF was determined using the SA-β-gal staining method.Intracellular reactive oxygen species(ROS)production was measured using the 2’,7’-dichlorodihydrofluorescein diacetate assay.Western blotting assay was performed to assess the level of antioxidant enzyme glutathione peroxidase 1(GPX1).In addition,intracellular collagen and collagenase contents were analyzed using the respective ELISA kits.Elastase activity in HDF supernatants was measured from p-nitroaniline release and normalized using total protein content.Results:Treatment of HDF with H2O2 increased the activity of SA-β-gal,but BDB pre-treatment resulted in the reduction of SA-β-gal activity.Moreover,BDB significantly reduced H2O2-induced intracellular ROS production.BDB also markedly increased the level of GPX1,which was inhibited by 400μM of H2O2.Furthermore,in in vitro study,BDB significantly increased intracellular collagen content and decreased matrix metalloproteinase-1 and elastase activities in HDF.Conclusions:Our results demonstrate that BDB shows antisenescence and anti-wrinkle activities in vitro.
文摘Objective:To investigate the potential anti-aging mechanism of9-hydroxy-6,7-dimethoxydalbergiquinol(HDDQ)on hydrogen peroxide(H2O2)-induced oxidative stress in human dermal fibroblasts(HDFs).Methods:The effect of HDDQ on cell viability was assessed by MTT assay,and the effects of HDDQ on senescence-like phenotypes were determined by senescence-associatedβ-galactosidase(SA-β-gal)staining,Western blotting analysis,and a cell proliferation assay.The expression level and activity of sirtuin-1(SIRT1)induced by HDDQ were also measured.Results:HDDQ reversed senescence-like phenotypes in the oxidant-challenged model,through reducing SA-β-gal activity and promoting cell growth.Meanwhile,decreases in ac-p53,p21Cip1/WAF1,and p16Ink4a and an increase in p Rb were observed.HDDQ induced the expression of SIRT1 in a concentration-and time-dependent manner.Moreover,HDDQ inhibited H2O2-induced phosphorylation of Akt by SIRT1 up-regulation and reduced SA-β-gal staining.Conclusions:HDDQ inhibits H2O2-induced premature senescence and upregulation of SIRT1 expression plays a vital role in the inhibition of the senescence phenotype in HDFs.
文摘Fanconi anemia (FA) is a fatal heterogeneous autosomal recessive disorder, characterized by progressive bone marrow failure, congenital defect and cancer predisposition. Cell culture from FA fibroblast (FAF) displays certain abnormalities as compared to normal human dermal fibroblast (NHDF). This prompted us to investigate the effect of a specific nutrient mixture (NM) containing ascorbic acid, lysine, proline and green tea extract, which has demonstrated a broad spectrum of pharmacological activities, on FAF compared to NHDF. We investigated the in vitro effect of NM on FAF and NHDF cell proliferation by MTT assay, MMPs secretion by zymography, morphology by H&E staining and apoptosis by green caspase assay. FAF (FA-A: PD20, FA-A: PD220) and NHDF were cultured in modified Dulbecco Eagle media. At near confluence, the cells were treated with different concentrations of NM (0, 50, 100, 250, 500 and 1000 μg/ml) in triplicate. The cells were also treated with PMA to induce MMP-9 activity. NM had no effect on FAF cell viability in both cell lines compared to control. In contrast NM exhibited 20% at 50 and 100, 50% at 250, 60% at 500 and 70% toxicity at 1000 μg/ml on NHDF cells. Zymography demonstrated MMP-2 and MMP-9 on PMA stimulation in FAF and NM inhibited the activity of both MMP-2 and MMP-9 in a dose response fashion with total block at 500 μg/ml. In contrast, NHDF exhibited only MMP-2, both active and inactive forms, and NM inhibited their activities in a dose-dependent manner with total block at 1000 μg/ml. H&E staining did not indicate any morphological changes in FAF nor induced apoptosis at higher concentrations, as seen by caspases assay. However, although no morphological changes in NHDF were noted up to NM 100 μg/ml, progressive changes in cell shrinkage, rounding and nuclear condensation, pertaining to apoptosis, were observed at higher concentrations. These changes were consistent with the results from the green caspases apoptosis assay. Our data demonstrate that NM exhibited different responses toward FAF and NHDF. This may in part be due to elevated chromosomal break, deletion and hypersensitivity to cross linking agents, a DNA repair disorder in FAF that is lacking in NHDF.
文摘Oat contains different components that possess antioxidant properties; no study to date has addressed the antioxidant effect of the extract of oat bran on the cellular level. Therefore, the present study focuses on the investi- gation of the protective effect of oat bran extract by enzymatic hydrolysates on human dermal fibroblast injury induced by hydrogen peroxide (H2O2). Kjeldahl determination, phenol-sulfuric acid method, and high-performance liquid chromatography (HPLC) analysis indicated that the enzymatic products of oat bran contain a protein amount of 71.93%, of which 97.43% are peptides with a molecular range from 438.56 to 1301.01 Da. Assays for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity indicate that oat peptide-dch extract has a direct and concentration-dependent antioxidant activity. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) colorimetric assay and the TdT-mediated digoxigenin-dUTP nick-end labeling (TUNEL) assay for apoptosis showed that administration of H2O2 in human dermal fibroblasts caused cell damage and apoptosis. Pre-incubation of human dermal fibroblasts with the Oatp for 24 h markedly inhibited human dermal fibroblast injury induced by H2O2, but ap- plication oat peptides with H2O2 at same time did not. Pre-treatment of human dermal fibroblasts with Oatp significantly reversed the H2O2-induced decrease of superoxide dismutase (SOD) and the inhibition of malondialdehyde (MDA). The results demonstrate that oat peptides possess antioxidant activity and are effective against H2O2-induced human dermal fibroblast injury by the enhanced activity of SOD and decrease in MDA level. Our results suggest that oat bran will have the potential to be further explored as an antioxidant functional food in the prevention of aging-related skin injury.
基金supported by National Natural Science Foundation of China(31600816)Natural Science Foundation of Jiangsu Province(BK20150599)State Key Laboratory for Mechanical Behavior of Materials of Xi’an Jiaotong University(20161804).
文摘The purpose of this article was to explore the effects of gold nanoparticles(GNPs)and silver nano-particles(SNPs)with different cytotoxicities on human dermal fibroblasts(HDFs)at the metabolic level.First,~20 nm of GNPs and SNPs were prepared,and their effects on the proliferation of HDFs were evaluated.Then,a metabolomics technique was used to analyse the effects of GNPs and SNPs on the expression profiles of metabolites in HDFs after 4,8 and 24h of treatment.Furthermore,the key metabolites and key metabolic pathways involved in the interaction of GNPs and SNPs with HDFs were identified through expression pattern analysis and metabolic pathway analysis of differentially expressed metabolites and were finally verified by experiments.The results of the cytotoxicity experiments showed that there was no cytotoxicity after the treatment of GNPs for 72 h,while the cytotoxicity of the SNPs reached grade 1 after 72 h.By using metabolomics analysis,29,30 and 27 metabolites were shown to be differentially expressed in HDFs after GNP treatment,while SNPs induced the differential expression of 13,33 and 22 metabolites after 4,8 and 24h of treatment,respectively.Six and four candidate key metabolites in the GNP and SNP groups were identified by expression pattern analysis and metabolic pathway analysis,respec-tively.The key metabolic pathways in the GNP and SNP groups were identified as the glutathione metabolic pathway(the key metabolite of which was glutathione)and the citrate cycle pathway(the key metabolite of which was malic acid).Based on the experiments used to verify the key metabolites and key metabolic pathways,it was found that the increase in glutathione after GNP treatment might trigger an oxidative stress protection mechanism and thus avoid cytotoxicity.After exposure to SNPs,the citric acid content was increased,mainly through the citrate cycle path-way,thereby inhibiting the synthesis of malic acid to affect the formation of ATP and finally leading to cytotoxicity.
基金support from Nanyang Tech-nological University,Singapore for PhD scholarship and fundingZhe-jiang Provincial Natural Science Foundation(LY20C070010)start-up funding from Wenzhou Institute,University of Chinese Academy of Sciences(WIUCASQD2019002).
文摘As a hallmark of skin aging,senescent human dermal fibroblasts(HDFs)are known to lose the ability to divide.However,they can still interact with their cellular environment and the surrounding matrix.As the skin ages,the progressive slowing down of HDFs function decreases the skin’s structural integrity,which is more serious than if there is the dermal collagen matrix eroded.This leads to matters of the unbalanced barrier under the skin,skin fragility,inadequate wound healing,as well as other cosmetic issues.It is also well documented that skin aging comes with significant stiffness increases.Therefore,understanding the interactions between HDFs and the surrounding microenvironments during senescence may provide insights into skin aging.Here we aim to inves-tigate matrix stiffness’effect on HDF senescence and elucidate possible mechanisms that make HDFs senescent.In our experiments,HDFs were cultivated on Polydimethylsiloxane(PDMS)with various stiffnesses and exposed to UV light to trigger senescence.Results show that HDFs are significantly affected by senescence when cultured on a matrix with stiffness.However,the cells are not significantly affected when cultured on a low stiffness matrix.The following characterization revealed cells cultured on stiffsubstrates under UV exposure had stimu-lated the nucleus factor kappa-B(NF-κB)activation.In contrast,cells on a matrix of softness only displayed low activation of NF-κB.NF-κB activity suppression with ammonium pyrrolidine dithiocarbamate(PDTC)decreases UV-induced HDFs senescence on stiffsubstrates.Taken together,we demonstrated that soft matrix defends HDFs against ultraviolet-induced senescence by inhibiting the activation of NF-κB.
文摘This paper sets out to demonstrate that scraping of the flat dorsal surface of human dermis with a scalpel blade and cell plating without centrifugation can lead to the recognition and identification of the individual packing micro pattern of dermal reticular fibroblasts at confluence. The characteristic alignment of papillary and reticular fibroblasts at right angles to each other led to the positive identification of reticular fibroblasts. A non-enzymatic means of sub-culturing (passaging), which yields fully functional, healthy cells with normal, phenotypic morphology is also described. Implications for published subcutaneous wound healing studies are discussed as well as the confluent reticular fibroblast configuration, interpreted as ananatomic site identity code,which may be the address of a specific fibroblast gene pattern expression.