The concept of health monitoring is a key aspect of the field of medicine that has been practiced for a long time. A commonly used diagnostic and health monitoring practice is pulse diagnosis, which can be traced back...The concept of health monitoring is a key aspect of the field of medicine that has been practiced for a long time. A commonly used diagnostic and health monitoring practice is pulse diagnosis, which can be traced back approximately five thousand years in the recorded history of China. With advances in the development of modern technology, the concept of health monitoring of a variety of engineering structures in several applications has begun to attract widespread attention. Of particular interest in this study is the health monitoring of civil structures. It seem natural, and even beneficial, that these two health-monitoring methods, one as applies to the human body and the other to civil structures, should be analyzed and compared. In this paper, the basic concepts and theories of the two monitoring methods are first discussed. Similarities are then summarized and commented upon. It is hoped that this correlation analysis may help provide structural engineers with some insights into the intrinsic concept of using pulse diagnosis in human health monitoring, which may of be some benefit in the development of modern structural health monitoring methods.展开更多
Reference values reflecting the findings of natural concentrations of teeth in a well-defined group of individuals, are indispensable, if one is to interpret results generated for clinical utility. Hence, a comprehens...Reference values reflecting the findings of natural concentrations of teeth in a well-defined group of individuals, are indispensable, if one is to interpret results generated for clinical utility. Hence, a comprehensive compilation of literature survey is attempted to make available as a reference guideline for tooth element concentrations. Presently, the reference values are proposed for 19 elements. Several factors that are found influencing element levels, are common to any biosample and are broadly grouped under four categories namely, the factors of teeth, donor, environment and analytical methods. How best the influencing factors to be considered during analysis, are discussed. It is elucidated that standardized method of analysis with quality assurance and precision will reduce the ambiguity of comparison of inter-laboratory measurement. When the merits and demerits of element measurements are evaluated, it is recognized that except a hurdle of difficult specific sampling, many advantages make teeth an attractive material for environmental health monitoring of population and for assessment of element status of deficiency and excess due to differential exposure. The available data of tooth elements are lesser in comparison to data of blood and hair;further studies are required for reference values of others elements and for distribution pattern in different conditions, parts and types of teeth.展开更多
Wearable bioelectronic devices have the capacity for real-time human health monitoring,the provision of tailored services,and natural interaction with smart devices.However,these wearable bioelectronic devices rely on...Wearable bioelectronic devices have the capacity for real-time human health monitoring,the provision of tailored services,and natural interaction with smart devices.However,these wearable bioelectronic devices rely on conventional rigid batteries that are frequently charged or replaced and are incompatible with the skin,leading to a discontinuity in complex therapeutic tasks related to human health monitoring and human-machine interaction.Stretchable triboelectric nanogenerator(TENG)is a high-efficiency energy harvesting technology that converts mechanical into electrical energy,effectively powering wearable bioelectronic devices.This study comprehensively overviews recent advances in stretchable TENG for use in wearable bioelectronic devices.The working mechanism of stretchable TENG is initially explained.A comprehensive discussion presents the approaches for fabricating stretchable TENG,including the design of stretchable structures and the selection of stretchable materials.Furthermore,applications of wearable bioelectronic devices based on stretchable TENG in human health monitoring(body movements,pulse,and respiration)and human-machine interaction(touch panels,machine control,and virtual reality)are introduced.Ultimately,the challenges and developmental trends regarding wearable bioelectronic devices based on stretchable TENG are elaborated.展开更多
基金the National Science Foundation through the International Collaboration Supplement of Grant No.CMS-0202320the HongKong Research Grants Council via the Competitive Earmarked Research Grant HKUST6220/01E
文摘The concept of health monitoring is a key aspect of the field of medicine that has been practiced for a long time. A commonly used diagnostic and health monitoring practice is pulse diagnosis, which can be traced back approximately five thousand years in the recorded history of China. With advances in the development of modern technology, the concept of health monitoring of a variety of engineering structures in several applications has begun to attract widespread attention. Of particular interest in this study is the health monitoring of civil structures. It seem natural, and even beneficial, that these two health-monitoring methods, one as applies to the human body and the other to civil structures, should be analyzed and compared. In this paper, the basic concepts and theories of the two monitoring methods are first discussed. Similarities are then summarized and commented upon. It is hoped that this correlation analysis may help provide structural engineers with some insights into the intrinsic concept of using pulse diagnosis in human health monitoring, which may of be some benefit in the development of modern structural health monitoring methods.
文摘Reference values reflecting the findings of natural concentrations of teeth in a well-defined group of individuals, are indispensable, if one is to interpret results generated for clinical utility. Hence, a comprehensive compilation of literature survey is attempted to make available as a reference guideline for tooth element concentrations. Presently, the reference values are proposed for 19 elements. Several factors that are found influencing element levels, are common to any biosample and are broadly grouped under four categories namely, the factors of teeth, donor, environment and analytical methods. How best the influencing factors to be considered during analysis, are discussed. It is elucidated that standardized method of analysis with quality assurance and precision will reduce the ambiguity of comparison of inter-laboratory measurement. When the merits and demerits of element measurements are evaluated, it is recognized that except a hurdle of difficult specific sampling, many advantages make teeth an attractive material for environmental health monitoring of population and for assessment of element status of deficiency and excess due to differential exposure. The available data of tooth elements are lesser in comparison to data of blood and hair;further studies are required for reference values of others elements and for distribution pattern in different conditions, parts and types of teeth.
基金supported by the National Natural Science Foundation of China(No.52203310)the China Postdoctoral Science Foundation(Nos.2023T160195 and 2023M730993)+1 种基金the Henan Province Science and Technology Research and Development Program Joint Fund Advantageous Discipline Cultivation Project(No.232301420033)the Henan Agricultural University Start-up Grant(No.30501054).
文摘Wearable bioelectronic devices have the capacity for real-time human health monitoring,the provision of tailored services,and natural interaction with smart devices.However,these wearable bioelectronic devices rely on conventional rigid batteries that are frequently charged or replaced and are incompatible with the skin,leading to a discontinuity in complex therapeutic tasks related to human health monitoring and human-machine interaction.Stretchable triboelectric nanogenerator(TENG)is a high-efficiency energy harvesting technology that converts mechanical into electrical energy,effectively powering wearable bioelectronic devices.This study comprehensively overviews recent advances in stretchable TENG for use in wearable bioelectronic devices.The working mechanism of stretchable TENG is initially explained.A comprehensive discussion presents the approaches for fabricating stretchable TENG,including the design of stretchable structures and the selection of stretchable materials.Furthermore,applications of wearable bioelectronic devices based on stretchable TENG in human health monitoring(body movements,pulse,and respiration)and human-machine interaction(touch panels,machine control,and virtual reality)are introduced.Ultimately,the challenges and developmental trends regarding wearable bioelectronic devices based on stretchable TENG are elaborated.