With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors ...With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average.展开更多
为准确识别乘客搭乘自动扶梯时的异常行为,避免安全事故的发生,提出了一种基于人体骨架的扶梯乘客异常行为识别方法。首先使用YOLOX-Tiny对视频中乘客位置进行检测,通过Alphapose算法提取骨骼关键点坐标,降低复杂背景的干扰;再使用多流...为准确识别乘客搭乘自动扶梯时的异常行为,避免安全事故的发生,提出了一种基于人体骨架的扶梯乘客异常行为识别方法。首先使用YOLOX-Tiny对视频中乘客位置进行检测,通过Alphapose算法提取骨骼关键点坐标,降低复杂背景的干扰;再使用多流膨胀3D卷积模块增强时空特征提取能力,聚合乘客骨架的全局特征;然后将其输入改进后的时空图卷积网络中提取乘客骨架信息,通过MS-TCN模块扩大接受域以增强时间特征的提取,联合人体关键点注意力模块(Key Point Attention Module,KPAM)提升网络对相似动作的关键骨架的关注度;最后通过Softmax对异常动作进行分类。采集扶梯运行现场视频制作数据集,试验结果表明,本文算法对乘客异常行为的识别精度达到96.1%,可应用于扶梯现场的视频监控系统,提高安全管理信息化水平。展开更多
[目的/意义]本文通过对2019年国际数字图书馆联合会议(Joint Conference on Digital Library,JCDL)的录用论文进行整体回顾,梳理了本届年会的最新研究成果与学科发展动态,以助国内图情领域学者更好地了解本届年会成果,把握国际数字图书...[目的/意义]本文通过对2019年国际数字图书馆联合会议(Joint Conference on Digital Library,JCDL)的录用论文进行整体回顾,梳理了本届年会的最新研究成果与学科发展动态,以助国内图情领域学者更好地了解本届年会成果,把握国际数字图书馆领域研究的前沿热点问题。[研究设计/方法]采用文献综述的方法进行研究。[结论/发现]本届年会更加关注数字图书馆如何通过多源数据的融合、数字人文馆藏资源的利用等实现信息服务深度融合;数字图书馆如何通过海量大数据挖掘与利用、用户行为分析提升其服务水平;如何通过对学术文本资源深入挖掘,实现信息计量学在学术评审、学术评价等方面的创新应用。[创新/价值]本文揭示了国际数字图书馆领域的最新发展态势,展望了未来数字图书馆领域的学术前沿方向。展开更多
基金supported by the National Natural Science Foundation of China(No.62006135)the Natural Science Foundation of Shandong Province(No.ZR2020QF116)。
文摘With the intensifying aging of the population,the phenomenon of the elderly living alone is also increasing.Therefore,using modern internet of things technology to monitor the daily behavior of the elderly in indoors is a meaningful study.Video-based action recognition tasks are easily affected by object occlusion and weak ambient light,resulting in poor recognition performance.Therefore,this paper proposes an indoor human behavior recognition method based on wireless fidelity(Wi-Fi)perception and video feature fusion by utilizing the ability of Wi-Fi signals to carry environmental information during the propagation process.This paper uses the public WiFi-based activity recognition dataset(WIAR)containing Wi-Fi channel state information and essential action videos,and then extracts video feature vectors and Wi-Fi signal feature vectors in the datasets through the two-stream convolutional neural network and standard statistical algorithms,respectively.Then the two sets of feature vectors are fused,and finally,the action classification and recognition are performed by the support vector machine(SVM).The experiments in this paper contrast experiments between the two-stream network model and the methods in this paper under three different environments.And the accuracy of action recognition after adding Wi-Fi signal feature fusion is improved by 10%on average.
文摘为准确识别乘客搭乘自动扶梯时的异常行为,避免安全事故的发生,提出了一种基于人体骨架的扶梯乘客异常行为识别方法。首先使用YOLOX-Tiny对视频中乘客位置进行检测,通过Alphapose算法提取骨骼关键点坐标,降低复杂背景的干扰;再使用多流膨胀3D卷积模块增强时空特征提取能力,聚合乘客骨架的全局特征;然后将其输入改进后的时空图卷积网络中提取乘客骨架信息,通过MS-TCN模块扩大接受域以增强时间特征的提取,联合人体关键点注意力模块(Key Point Attention Module,KPAM)提升网络对相似动作的关键骨架的关注度;最后通过Softmax对异常动作进行分类。采集扶梯运行现场视频制作数据集,试验结果表明,本文算法对乘客异常行为的识别精度达到96.1%,可应用于扶梯现场的视频监控系统,提高安全管理信息化水平。
文摘[目的/意义]本文通过对2019年国际数字图书馆联合会议(Joint Conference on Digital Library,JCDL)的录用论文进行整体回顾,梳理了本届年会的最新研究成果与学科发展动态,以助国内图情领域学者更好地了解本届年会成果,把握国际数字图书馆领域研究的前沿热点问题。[研究设计/方法]采用文献综述的方法进行研究。[结论/发现]本届年会更加关注数字图书馆如何通过多源数据的融合、数字人文馆藏资源的利用等实现信息服务深度融合;数字图书馆如何通过海量大数据挖掘与利用、用户行为分析提升其服务水平;如何通过对学术文本资源深入挖掘,实现信息计量学在学术评审、学术评价等方面的创新应用。[创新/价值]本文揭示了国际数字图书馆领域的最新发展态势,展望了未来数字图书馆领域的学术前沿方向。