Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human pros...Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dinucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON. The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays. Results: In vitro study revealed that manganese chloride (MnCI2) treatment for 16 h inhibited the enzymatic activity of mACON, which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells. Although results from transient gene expression assays showed that MnCI2 treatment upregulated gene translation by approximately 5-fold through the iron response element pathway, immunoblot and reporter assays showed that MnCl2 treatments inhibited protein and gene expression of mACON. This effect was reversed by cotreatment with ferric ammonium citrate. Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCh on the gene expression of mACON. Conclusion: These findings suggest that manganese acts as an antagonist of iron, disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.展开更多
Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were e...Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.展开更多
The present study investigated the effects of the multikinase inhibitor sorafenib on androgen-independent can- cer cells viability and intracellular signaling. Human androgen-independent PC-3 prostate cancer cells wer...The present study investigated the effects of the multikinase inhibitor sorafenib on androgen-independent can- cer cells viability and intracellular signaling. Human androgen-independent PC-3 prostate cancer cells were treated with sorafenib. At concentration that suppresses extracellular signal-regulated kinase phosphorylation, sorafenib treatment reduced the mitochondrial transmembrane potential. Sorafenib also down-modulated the levels of mye- loid cell leukemia 1, survivin and cellular inhibitor of apoptosis protein 2. Sorafenib induced caspase-3 cleavage and the mitochondrial release of cytochrome c. However, no nuclear translocation of apoptosis inducing factor was detected after treatment and the pan-caspase inhibitor Z-VAD-FMK had an obvious protective effect against the drug. In conclusion, sorafenib induces apoptosis through a caspase-dependent mechanism with down-regulated antiapoptotic proteins in androgen-independent prostate cancer cells in vitro.展开更多
Objective To investigate the effect of IL-6 on prostatic carcinoma cell lines, and differential effects on androgen-dependent and androgen-independent prostatic carcinoma cells. Methods The IL-6 producing capacities o...Objective To investigate the effect of IL-6 on prostatic carcinoma cell lines, and differential effects on androgen-dependent and androgen-independent prostatic carcinoma cells. Methods The IL-6 producing capacities of LNCaP and PC-3 cells were determined, and effects of exogenous IL-6 and anti-IL - 6 antibodies on LNCaP and PC - 3 cells were examined. Results LNCaP produced a very small amount of IL-6, but PC-3 produced more, the concentraion of IL-6 being 190 pg/48 h per ml(1 × 106). The exogenous IL-6 inhibited LNCaP growth significantly,but had no obvious effect on PC -3 cells. Anti-IL-6 antibodies lowered PC-3 cells growth rate but had neutral effect on LNCaP. Conclusion PC-3 cells produces IL-6 massively in autocrine manner. IL-6 could be antagonized by anti-IL-6 antibodies,resulting in slowing PC-3 cells growth, and LNCaP cells growth could be inhibited by exogenous IL-6.7 refs,2 tabs.展开更多
Aim:To investigate the possible role of manganese in the regulation of mitochondrial aconitase(mACON)activity human prostate carcinoma cell line PC-3 cells.Methods:The mACON enzymatic activities of human prostate carc...Aim:To investigate the possible role of manganese in the regulation of mitochondrial aconitase(mACON)activity human prostate carcinoma cell line PC-3 cells.Methods:The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dmucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON.The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electro- phoretic mobility-shift assays.Results:In vitro study revealed that manganese chloride(MnCl2)treatment for 16h inhibited the enzymatic activity of mACON,which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells.Although results from transient gene expression assays showed that MnCl_2,treatment upregulated gene translation by approximately 5-fold through the iron response element pathway,immunoblot and reporter assays showed that MnCl_2 treatments inhibited protein and gene expression of mACON.This effect was reversed by co- treatment with fenic ammonium citrate.Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCl_2 on the gene expression of mACON.Conclusion:These findings suggest that manganese acts as an antagonist of iron,disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.展开更多
Objective:To investigate the effect of MMP-9 inhibitor(Mki67)on the biology of human oral squamous cell carcinoma SCC15 cell line and to explore its mechanism of action through PI3K/Akt signaling pathway.Methods:SCC15...Objective:To investigate the effect of MMP-9 inhibitor(Mki67)on the biology of human oral squamous cell carcinoma SCC15 cell line and to explore its mechanism of action through PI3K/Akt signaling pathway.Methods:SCC15 cells were extracted,and the supernatant was discarded.The cells were then rinsed twice with PBS,and 0,2.5,5,and 10μL of Mki67(50 mg/mL)were added to the culture respectively.The inhibition rate of cell proliferation was detected by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT)method,and the cell migration was measured by Transwell chamber test.The cell apoptosis rate was detected by cytometry,and the p-Akt protein content in the cells of each group was determined by a double-antibody sandwich enzyme-linked immunosorbent assay(ELISA)kit.Results:The cell proliferation rates of the 2.5μL,5μL,and 10μL dose groups were all lower than the 0μL group(P<0.05)before treatment,and the cell proliferation rates in the 2.5μL,5μL,and 10μL dose groups decreased overtime(P<0.05).After 24 h,with the increase of Mki67 concentration,the number of migration and invasion gradually decreased(P<0.05),and the number of apoptosis gradually increased(P<0.05);besides,the relative expression of MMP-9,PI3K,and Akt mRNA decreased gradually(P<0.05),and the expression level of Akt mRNA was not statistically significant(P>0.05).Conclusion:MMP-9 inhibitor(Mki67)can inhibit the proliferation and migration of SCC15 cell line and induce apoptosis,and its mechanism of action may be related to the inhibition of PI3K/Akt signaling pathway.展开更多
Summary: To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24 h. Annixin-V fluoresc...Summary: To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24 h. Annixin-V fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time-and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor cells, it may become a potential alternative for the treatment of advanced prostate cancer.展开更多
Objective:The aim of this study was to investigate the inhibitory effect of apogossypolone (ApoG2) on subcutaneous implants of human LNCaP prostatic carcinoma cells, and explore its mechanism. Methods:To establish hum...Objective:The aim of this study was to investigate the inhibitory effect of apogossypolone (ApoG2) on subcutaneous implants of human LNCaP prostatic carcinoma cells, and explore its mechanism. Methods:To establish human LNCaP prostatic carcinoma cell line subcutaneous xenograft models and observe the inhibitory effect of ApoG2 on the tumor model. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and-8 in tumor tissues. The microvessel density was calculated. Results:ApoG2 could obviously inhibit the growth of subcutaneous prostatic carcinoma implant. ApoG2 decreased the expression of PCNA and CD31, and increased the expression of caspases-3,-8 in tumor tissues. Conclusion:ApoG2 has an inhibitory effect on prostatic carcinoma implants.展开更多
Objective We transfected recombinant expression plasmid of pcDNA3. 1-HIF-1α into prostate cancer cells, to research effect of HIF-1α on proliferation of prostate cancer cell PC-3. Methods We selected a stable expres...Objective We transfected recombinant expression plasmid of pcDNA3. 1-HIF-1α into prostate cancer cells, to research effect of HIF-1α on proliferation of prostate cancer cell PC-3. Methods We selected a stable expression cell line with G418 we selected by transfection展开更多
Aim To investigate the effect of DAPT (γ-secretase inhibitor) on the growth of human tongue carcinoma cells and to determine the molecular mechanism to enable the potential application of DAPT to the treatment of t...Aim To investigate the effect of DAPT (γ-secretase inhibitor) on the growth of human tongue carcinoma cells and to determine the molecular mechanism to enable the potential application of DAPT to the treatment of tongue carcinoma. Methodology Human tongue carcinoma Tca8113 cells were cultured with DAPT. Cell growth was determined using Indigotic Reduction method. The cell cycle and apoptosis were analyzed by flow cytometry. Real-time PCR and Immuno-Fluorescence (IF) were employed to determine the intracellular expression levels. Results DAPT inhibited the growth of human tongue carcinoma Tca8113 cells by inducing G0-G1 cell cycle arrest and apoptosis, The mRNA levels of Hairy/Enhancer of Split-1 (Hes-1), a target of Notch activation, were reduced by DAPT in a dose-dependent manner. Coincident with this observation, DAPT induced a dose-dependent promotion of constitutive Caspase-3 in Tca8113 cells. Conclusion DAPT may have a therapeutic value for human tongue carcinoma. Moreover, the effects of DAPT in tumor inhibition may arise partly via the modulation of Notch- 1 and Caspase-3.展开更多
Objective: To observe the effect of the artesunate (ART) on cellular proliferation in vitro, to search for the possible anti-tumor mechanism of ART on endometrial carcinoma at the molecular level and to provide the...Objective: To observe the effect of the artesunate (ART) on cellular proliferation in vitro, to search for the possible anti-tumor mechanism of ART on endometrial carcinoma at the molecular level and to provide the experimental and theoretical foundations for the clinical applications of ART. Methods: The cell proliferation was observed by microscope; MTT was used to examine the effects of ART on proliferation of HEC-1B cells, and flow cytometric analysis was used to detect cell cycle and apoptosis. The human endometrial carcinoma HEC-1B cells were conventionally cultured; ART was administered with a concentration of 40 μg/ml before the total RNA were extracted, mRNA expression of Survivin, Caspase-3, N-Cadherin, E-Cadherin, Fibronectinl and Cox-2 were detected using RT-PCR. Results: ART reduced proliferation in human endometrial carcinoma cell line HEC-1B in a dose- and time-dependent effect. The cells of G0/G1 stage were significantly increased (P〈0.05), but the cells of G2/M stages were significantly decreased (P〈0.05), so it has shown that the cell cycle was probably blocked in G0/G1 stage. After intervention with ART at 20 and 80 μg/ml for 48 h, cellular apoptosis rate respectively was (36.42±0.77)% and (11.77±0.58)%, and the difference was statistically significant compared with the control ([6.64±0.191%, P〈0.01). The expression of Cox-2 mRNA in the ART group was lower than those of control group, yet the expression of Caspase-3 and E-Cadherin mRNA in the ART group was higher than those of control group. Conclusion: ART can inhibit HEC-1B cell growth and proliferation in a dose- and time-dependent manner. Furthermore, ART can induce apoptosis in a dose-dependent manner. ART is able to downregulate Cox-2 mRNA expression and to upregulate E-Cadherin and Caspase-3 mRNA expression. So we can conclude that ART could induce the endometrial carcinoma HEC-1B cell apoptosis and inhibit tumor cell proliferation.展开更多
Summary:To investigate the effects of ATRA, acitretin and tazarotene on the growth and apoptosis of human tongue squamous cell carcinoma cell line Tca8113. The effect of retinoids on growth of Tca8113 cells in vitro ...Summary:To investigate the effects of ATRA, acitretin and tazarotene on the growth and apoptosis of human tongue squamous cell carcinoma cell line Tca8113. The effect of retinoids on growth of Tca8113 cells in vitro was examined by MTT assay and Trypan blue exclusion assay. Cell cycle analysis, early apoptosis analysis with double staining with Annexin V-FITC and PI, and active caspase-3 analysis with the staining of FITC-conjugated monoclonal rabbit anli-active caspase-3 antibody were made by flow cytometer. Streptavidin-biotin complex (SABC) immunocytochemical assays were employed for the detections of Bax/Bcl-2 proteins expressions. Our results showed that the retinoids inhibited growth of Tca8113 cells in a dose-and time-dependent manner with maximal inhibition 24 h after treatment of 10 5 mol/L. 10^-5 mol/L retinoids altered cell cycle distribution of Tca8113 cells, revealing an increase in G0/G1-phase population, a decrease in S-phase population and the inhibition of G1/S switching. 10^-5 mol/L retinoids significantly induced apoptosis of Tca8113 cells (all P〈0.05), elevated the cells population with detectable active caspase-3 (P〈 0.05 for all), increased the number of cells forming Bax and decreased the number of cells forming Bcl-2 significantly (all P〈0.05). Acitretin played a most prominent role among the retinoids. It is concluded that the inhibition of cell cycle progress of Tca8113 cells by ATRA, acitretin and tazarotene is one of the possible mechanisms for proliferation arrest of TcaS113 cells elicited by the retinoids. The retinoids mediate apoptosis in TcaS113 cells that may be caspase-dependent through mitochondria pathway. High concentration retinoids inhibit growth of Tca8113 cells in vitro by interfering with proliferation and inducing apoptosis of cells. Acitretin may be an alternative medicine for the prevention and treatment of tongue squamous cell carcinoma.展开更多
文摘Aim: To investigate the possible role of manganese in the regulation of mitochondrial aconitase (mACON) activity human prostate carcinoma cell line PC-3 cells. Methods: The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dinucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON. The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays. Results: In vitro study revealed that manganese chloride (MnCI2) treatment for 16 h inhibited the enzymatic activity of mACON, which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells. Although results from transient gene expression assays showed that MnCI2 treatment upregulated gene translation by approximately 5-fold through the iron response element pathway, immunoblot and reporter assays showed that MnCl2 treatments inhibited protein and gene expression of mACON. This effect was reversed by cotreatment with ferric ammonium citrate. Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCh on the gene expression of mACON. Conclusion: These findings suggest that manganese acts as an antagonist of iron, disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.
文摘Objective: To investigate the inhibitory effect of apogossypolone (ApoG2) on prostate cancer cell line PC-3 in vivo, and explore its mechanism. Methods: The models of transplantation tumors in Balb/c nu/nu mice were established via subcutaneous injection of PC-3 cells and the tumor-transplanted mice were divided into 4 groups: control group and three ApoG2 treatment groups, with 10 mice in each group. Volumes of the tumor were estimated every 2 d and the morphology of tumor tissues was observed. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and caspase-8 in tumor tissues. Results: ApoG2 (2.5 mg/kg-10 mg/kg) given intraperitoneally once a day can obviously inhibit the growth of subcutaneous prostatic carcinoma implant. The tumor volume decreased obviously when the treatment dosage was bigger than 5.0 mg/kg (P<0.01). Meanwhile, ApoG2 decreased the expression of PCNA and CD31, and enhanced the expression of caspases-3, caspase-8 in tumor tissues. Conclusion: ApoG2 exert an inhibitory effect on prostatic carcinoma possibly by inducing apoptosis and inhibiting tumor angiogenesis.
基金We thank Mr Wen-Tong Meng and Mr Ji-Long Gou (Stem Cell Research Laboratory, West China Hospital, Sichuan University, Chengdu, China) for technical assistance with the flow cytometry. We also thank BioMed Proofreading for their editing work. This work was supported by grants to Prof. Hao Zeng and Dr Rui Huang from the National Natural Science Foundation of China (NSFC 30700977 and 30600153).
文摘The present study investigated the effects of the multikinase inhibitor sorafenib on androgen-independent can- cer cells viability and intracellular signaling. Human androgen-independent PC-3 prostate cancer cells were treated with sorafenib. At concentration that suppresses extracellular signal-regulated kinase phosphorylation, sorafenib treatment reduced the mitochondrial transmembrane potential. Sorafenib also down-modulated the levels of mye- loid cell leukemia 1, survivin and cellular inhibitor of apoptosis protein 2. Sorafenib induced caspase-3 cleavage and the mitochondrial release of cytochrome c. However, no nuclear translocation of apoptosis inducing factor was detected after treatment and the pan-caspase inhibitor Z-VAD-FMK had an obvious protective effect against the drug. In conclusion, sorafenib induces apoptosis through a caspase-dependent mechanism with down-regulated antiapoptotic proteins in androgen-independent prostate cancer cells in vitro.
文摘Objective To investigate the effect of IL-6 on prostatic carcinoma cell lines, and differential effects on androgen-dependent and androgen-independent prostatic carcinoma cells. Methods The IL-6 producing capacities of LNCaP and PC-3 cells were determined, and effects of exogenous IL-6 and anti-IL - 6 antibodies on LNCaP and PC - 3 cells were examined. Results LNCaP produced a very small amount of IL-6, but PC-3 produced more, the concentraion of IL-6 being 190 pg/48 h per ml(1 × 106). The exogenous IL-6 inhibited LNCaP growth significantly,but had no obvious effect on PC -3 cells. Anti-IL-6 antibodies lowered PC-3 cells growth rate but had neutral effect on LNCaP. Conclusion PC-3 cells produces IL-6 massively in autocrine manner. IL-6 could be antagonized by anti-IL-6 antibodies,resulting in slowing PC-3 cells growth, and LNCaP cells growth could be inhibited by exogenous IL-6.7 refs,2 tabs.
文摘Aim:To investigate the possible role of manganese in the regulation of mitochondrial aconitase(mACON)activity human prostate carcinoma cell line PC-3 cells.Methods:The mACON enzymatic activities of human prostate carcinoma cell line PC-3 cells were determined using a reduced nicotinamide adenine dmucleotide-coupled assay. Immunoblot and transient gene expression assays were used to study gene expression of the mACON.The putative response element for gene expression was identified using reporter assays with site-directed mutagenesis and electro- phoretic mobility-shift assays.Results:In vitro study revealed that manganese chloride(MnCl2)treatment for 16h inhibited the enzymatic activity of mACON,which induced the inhibition of citrate utility and cell proliferation of PC- 3 cells.Although results from transient gene expression assays showed that MnCl_2,treatment upregulated gene translation by approximately 5-fold through the iron response element pathway,immunoblot and reporter assays showed that MnCl_2 treatments inhibited protein and gene expression of mACON.This effect was reversed by co- treatment with fenic ammonium citrate.Additional reporter assays with site-directed mutagenesis and electrophoretic mobility-shift assays suggested that a putative metal response element in the promoter of the mACON gene was involved in the regulation of MnCl_2 on the gene expression of mACON.Conclusion:These findings suggest that manganese acts as an antagonist of iron,disrupting the enzymatic activity and gene expression of mACON and citrate metabolism in the prostate.
文摘Objective:To investigate the effect of MMP-9 inhibitor(Mki67)on the biology of human oral squamous cell carcinoma SCC15 cell line and to explore its mechanism of action through PI3K/Akt signaling pathway.Methods:SCC15 cells were extracted,and the supernatant was discarded.The cells were then rinsed twice with PBS,and 0,2.5,5,and 10μL of Mki67(50 mg/mL)were added to the culture respectively.The inhibition rate of cell proliferation was detected by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide(MTT)method,and the cell migration was measured by Transwell chamber test.The cell apoptosis rate was detected by cytometry,and the p-Akt protein content in the cells of each group was determined by a double-antibody sandwich enzyme-linked immunosorbent assay(ELISA)kit.Results:The cell proliferation rates of the 2.5μL,5μL,and 10μL dose groups were all lower than the 0μL group(P<0.05)before treatment,and the cell proliferation rates in the 2.5μL,5μL,and 10μL dose groups decreased overtime(P<0.05).After 24 h,with the increase of Mki67 concentration,the number of migration and invasion gradually decreased(P<0.05),and the number of apoptosis gradually increased(P<0.05);besides,the relative expression of MMP-9,PI3K,and Akt mRNA decreased gradually(P<0.05),and the expression level of Akt mRNA was not statistically significant(P>0.05).Conclusion:MMP-9 inhibitor(Mki67)can inhibit the proliferation and migration of SCC15 cell line and induce apoptosis,and its mechanism of action may be related to the inhibition of PI3K/Akt signaling pathway.
文摘Summary: To study the effect of tumor necrosis factor-related apoptosis inducing ligand (TRAIL) on PC-3M cell line, PC-3M cell line was incubated with gradient concentrations of TRAIL for 4-24 h. Annixin-V fluorescence staining and TUNEL method were employed to detect the apoptosis of PC-3M cells. The morphology of apoptotic PC-3M cells was observed by electron microscopy. The relationship between TRAIL concentrations and the percentage of apoptotic cells was evaluated by flow cytometry. The proliferation inhibitory ratio was calculated by using MTT colorimetry. Our results showed that apoptosis of PC-3M cells could be induced by treatment with TRAIL for at most 4 h. The results of flow cytometry and MTT colorimetry demonstrated a time-and concentration-dependent relationship between cell apoptosis rate and TRAIL concentration. It is concluded that apoptosis of PC-3M cells can be induced by TRAIL. Because of the selective killing effect of TRAIL on tumor cells, it may become a potential alternative for the treatment of advanced prostate cancer.
文摘Objective:The aim of this study was to investigate the inhibitory effect of apogossypolone (ApoG2) on subcutaneous implants of human LNCaP prostatic carcinoma cells, and explore its mechanism. Methods:To establish human LNCaP prostatic carcinoma cell line subcutaneous xenograft models and observe the inhibitory effect of ApoG2 on the tumor model. Immunohistochemistry was employed to observe the expression of Bcl-2, PCNA, CD31, caspase-3 and-8 in tumor tissues. The microvessel density was calculated. Results:ApoG2 could obviously inhibit the growth of subcutaneous prostatic carcinoma implant. ApoG2 decreased the expression of PCNA and CD31, and increased the expression of caspases-3,-8 in tumor tissues. Conclusion:ApoG2 has an inhibitory effect on prostatic carcinoma implants.
文摘Objective We transfected recombinant expression plasmid of pcDNA3. 1-HIF-1α into prostate cancer cells, to research effect of HIF-1α on proliferation of prostate cancer cell PC-3. Methods We selected a stable expression cell line with G418 we selected by transfection
基金funded by the National Natural Science Foundation of China(30801304)Specialized Research Fund for the Doctoral Program of Higher Education(20070610062)+1 种基金Opening Funding of the State Key Laboratory of Oral Diseases, Sichuan University(SKLOD011)the Applied Fundarmental Project of Sichuan Province(2008 JY0028-2)
文摘Aim To investigate the effect of DAPT (γ-secretase inhibitor) on the growth of human tongue carcinoma cells and to determine the molecular mechanism to enable the potential application of DAPT to the treatment of tongue carcinoma. Methodology Human tongue carcinoma Tca8113 cells were cultured with DAPT. Cell growth was determined using Indigotic Reduction method. The cell cycle and apoptosis were analyzed by flow cytometry. Real-time PCR and Immuno-Fluorescence (IF) were employed to determine the intracellular expression levels. Results DAPT inhibited the growth of human tongue carcinoma Tca8113 cells by inducing G0-G1 cell cycle arrest and apoptosis, The mRNA levels of Hairy/Enhancer of Split-1 (Hes-1), a target of Notch activation, were reduced by DAPT in a dose-dependent manner. Coincident with this observation, DAPT induced a dose-dependent promotion of constitutive Caspase-3 in Tca8113 cells. Conclusion DAPT may have a therapeutic value for human tongue carcinoma. Moreover, the effects of DAPT in tumor inhibition may arise partly via the modulation of Notch- 1 and Caspase-3.
文摘Objective: To observe the effect of the artesunate (ART) on cellular proliferation in vitro, to search for the possible anti-tumor mechanism of ART on endometrial carcinoma at the molecular level and to provide the experimental and theoretical foundations for the clinical applications of ART. Methods: The cell proliferation was observed by microscope; MTT was used to examine the effects of ART on proliferation of HEC-1B cells, and flow cytometric analysis was used to detect cell cycle and apoptosis. The human endometrial carcinoma HEC-1B cells were conventionally cultured; ART was administered with a concentration of 40 μg/ml before the total RNA were extracted, mRNA expression of Survivin, Caspase-3, N-Cadherin, E-Cadherin, Fibronectinl and Cox-2 were detected using RT-PCR. Results: ART reduced proliferation in human endometrial carcinoma cell line HEC-1B in a dose- and time-dependent effect. The cells of G0/G1 stage were significantly increased (P〈0.05), but the cells of G2/M stages were significantly decreased (P〈0.05), so it has shown that the cell cycle was probably blocked in G0/G1 stage. After intervention with ART at 20 and 80 μg/ml for 48 h, cellular apoptosis rate respectively was (36.42±0.77)% and (11.77±0.58)%, and the difference was statistically significant compared with the control ([6.64±0.191%, P〈0.01). The expression of Cox-2 mRNA in the ART group was lower than those of control group, yet the expression of Caspase-3 and E-Cadherin mRNA in the ART group was higher than those of control group. Conclusion: ART can inhibit HEC-1B cell growth and proliferation in a dose- and time-dependent manner. Furthermore, ART can induce apoptosis in a dose-dependent manner. ART is able to downregulate Cox-2 mRNA expression and to upregulate E-Cadherin and Caspase-3 mRNA expression. So we can conclude that ART could induce the endometrial carcinoma HEC-1B cell apoptosis and inhibit tumor cell proliferation.
文摘Summary:To investigate the effects of ATRA, acitretin and tazarotene on the growth and apoptosis of human tongue squamous cell carcinoma cell line Tca8113. The effect of retinoids on growth of Tca8113 cells in vitro was examined by MTT assay and Trypan blue exclusion assay. Cell cycle analysis, early apoptosis analysis with double staining with Annexin V-FITC and PI, and active caspase-3 analysis with the staining of FITC-conjugated monoclonal rabbit anli-active caspase-3 antibody were made by flow cytometer. Streptavidin-biotin complex (SABC) immunocytochemical assays were employed for the detections of Bax/Bcl-2 proteins expressions. Our results showed that the retinoids inhibited growth of Tca8113 cells in a dose-and time-dependent manner with maximal inhibition 24 h after treatment of 10 5 mol/L. 10^-5 mol/L retinoids altered cell cycle distribution of Tca8113 cells, revealing an increase in G0/G1-phase population, a decrease in S-phase population and the inhibition of G1/S switching. 10^-5 mol/L retinoids significantly induced apoptosis of Tca8113 cells (all P〈0.05), elevated the cells population with detectable active caspase-3 (P〈 0.05 for all), increased the number of cells forming Bax and decreased the number of cells forming Bcl-2 significantly (all P〈0.05). Acitretin played a most prominent role among the retinoids. It is concluded that the inhibition of cell cycle progress of Tca8113 cells by ATRA, acitretin and tazarotene is one of the possible mechanisms for proliferation arrest of TcaS113 cells elicited by the retinoids. The retinoids mediate apoptosis in TcaS113 cells that may be caspase-dependent through mitochondria pathway. High concentration retinoids inhibit growth of Tca8113 cells in vitro by interfering with proliferation and inducing apoptosis of cells. Acitretin may be an alternative medicine for the prevention and treatment of tongue squamous cell carcinoma.