As a constituent of blood-retinal barrier and retinal outer segment(ROS) scavenger, retinal pigmented epithelium(RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and...As a constituent of blood-retinal barrier and retinal outer segment(ROS) scavenger, retinal pigmented epithelium(RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE(h RPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE(h ESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE(i PSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received i PSCRPE transplant, which is a hallmark of i PSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE(SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.展开更多
Summary: The proliferating cell nuclear antigen (PCNA) gene expression was blocked and retinal pigment epithelium (RPE) proliferation was inhibited by using antisense oligonucleotides (AS-ODN) mediated by lipos...Summary: The proliferating cell nuclear antigen (PCNA) gene expression was blocked and retinal pigment epithelium (RPE) proliferation was inhibited by using antisense oligonucleotides (AS-ODN) mediated by liposome, to find a new genetic therapy of proliferative vitreoretinopathy (PVR). RPE cells cultured in vitro were transfected with synthetic fluorescence labled AS-ODN mediated by liposome-Lipofectamine, and the intracellular distribution and persistence time of AS-ODN were dynamically observed. AS-ODN (0.07, 0.28 and 1.12 μ mol/L and sense oligonucleotides (S-ODN with the same concentrations as AS-ODN) mediated by liposome were delivered to the RPE cells cultured in vitro, and CPM values were measured by ^3H-TdR incorporation assay and analyzed statistically by variance by comparison with blank control group. Expression ofPCNA mRNA in RPE cells was detected by in situ hybridization after the treatment of different concentrations of PCNA AS-ODN and S-ODN, and the average optic density (AOD) was measured by image analysis system and was subjected to q-test and correlation analysis with CPM. Our results showed that AS-ODN mediated by liposome could quickly aggregate in cellular plasma and nuclei in 30 min and 6 h, and stayed for as long as 6 days. AS-ODN (0.28 and 1.12 μmol/L) markedly suppressed proliferation of RPE cells in a dose-dependent manner with the difference being statistically significant (P〈0.05 and P〈0.01, repectively) as compared with blank control group. AOD was well correlated with CPM (r=0.975). It is concluded that liposome could increase transfection efficiency of AS-ODN in RPE cells, and AS-ODN could sequence-specifically suppress PCNA mRNA expression and proliferation of human RPE cells.展开更多
文摘As a constituent of blood-retinal barrier and retinal outer segment(ROS) scavenger, retinal pigmented epithelium(RPE) is fundamental to normal function of retina. Malfunctioning of RPE contributes to the onset and advance of retinal degenerative diseases. Up to date, RPE replacement therapy is the only possible method to completely reverse retinal degeneration. Transplantation of human RPE stem cell-derived RPE(h RPESC-RPE) has shown some good results in animal models. With promising results in terms of safety and visual improvement, human embryonic stem cell-derived RPE(h ESC-RPE) can be expected in clinical settings in the near future. Despite twists and turns, induced pluripotent stem cell-derived RPE(i PSC-RPE) is now being intensely investigated to overcome genetic and epigenetic instability. By far, only one patient has received i PSCRPE transplant, which is a hallmark of i PSC technology development. During follow-up, no major complications such as immunogenicity or tumorigenesis have been observed. Future trials should keep focusing on the safety of stem cell-derived RPE(SC-RPE) especially in long period, and better understanding of the nature of stem cell and the molecular events in the process to generate SC-RPE is necessary to the prosperity of SC-RPE clinical application.
文摘Summary: The proliferating cell nuclear antigen (PCNA) gene expression was blocked and retinal pigment epithelium (RPE) proliferation was inhibited by using antisense oligonucleotides (AS-ODN) mediated by liposome, to find a new genetic therapy of proliferative vitreoretinopathy (PVR). RPE cells cultured in vitro were transfected with synthetic fluorescence labled AS-ODN mediated by liposome-Lipofectamine, and the intracellular distribution and persistence time of AS-ODN were dynamically observed. AS-ODN (0.07, 0.28 and 1.12 μ mol/L and sense oligonucleotides (S-ODN with the same concentrations as AS-ODN) mediated by liposome were delivered to the RPE cells cultured in vitro, and CPM values were measured by ^3H-TdR incorporation assay and analyzed statistically by variance by comparison with blank control group. Expression ofPCNA mRNA in RPE cells was detected by in situ hybridization after the treatment of different concentrations of PCNA AS-ODN and S-ODN, and the average optic density (AOD) was measured by image analysis system and was subjected to q-test and correlation analysis with CPM. Our results showed that AS-ODN mediated by liposome could quickly aggregate in cellular plasma and nuclei in 30 min and 6 h, and stayed for as long as 6 days. AS-ODN (0.28 and 1.12 μmol/L) markedly suppressed proliferation of RPE cells in a dose-dependent manner with the difference being statistically significant (P〈0.05 and P〈0.01, repectively) as compared with blank control group. AOD was well correlated with CPM (r=0.975). It is concluded that liposome could increase transfection efficiency of AS-ODN in RPE cells, and AS-ODN could sequence-specifically suppress PCNA mRNA expression and proliferation of human RPE cells.