期刊文献+
共找到385篇文章
< 1 2 20 >
每页显示 20 50 100
Human umbilical cord mesenchymal stem cells derivedexosomes on VEGF-A in hypoxic-induced mice retinal astrocytes and mice model of retinopathy of prematurity
1
作者 Xiao-Tian Zhang Bo-Wen Zhao +1 位作者 Yuan-Long Zhang Song Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第7期1238-1247,共10页
AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular en... AIM:To observe the effect of human umbilical cord mesenchymal stem cells(hUCMSCs)secretions on the relevant factors in mouse retinal astrocytes,and to investigate the effect of hUCMSCs on the expression of vascular endothelial growth factor-A(VEGF-A)and to observe the therapeutic effect on the mouse model of retinopathy of prematurity(ROP).METHODS:Cultured hUCMSCs and extracted exosomes from them and then retinal astrocytes were divided into control group and hypoxia group.MTT assay,flow cytometry,reverse transcription-polymerase chain reaction(RT-PCR)and Western blot were used to detect related indicators.Possible mechanisms by which hUCMSCs exosomes affect VEGF-A expression in hypoxia-induced mouse retinal astrocytes were explored.At last,the efficacy of exosomes of UCMSCs in a mouse ROP model was explored.Graphpad6 was used to comprehensively process data information.RESULTS:The secretion was successfully extracted from the culture supernatant of hUCMSCs by gradient ultracentrifugation.Reactive oxygen species(ROS)and hypoxia inducible factor-1α(HIF-1α)of mice retinal astrocytes under different hypoxia time and the expression level of VEGF-A protein and VEGF-A mRNA increased,and the ROP cell model was established after 6h of hypoxia.The secretions of medium and high concentrations of hUCMSCs can reduce ROS and HIF-1α,the expression levels of VEGF-A protein and VEGF-A mRNA are statistically significant and concentration dependent.Compared with the ROP cell model group,the expression of phosphatidylinositol 3-kinase(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR)signal pathway related factors in the hUCMSCs exocrine group is significantly decreased.The intravitreal injection of the secretions of medium and high concentrations of hUCMSCs can reduce VEGF-A and HIF-1αin ROP model tissues.HE staining shows that the number of retinal neovascularization in ROP mice decreases with the increase of the dose of hUCMSCs secretion.CONCLUSION:In a hypoxia induced mouse retinal astrocyte model,hUCMSCs exosomes are found to effectively reduce the expression of HIF-1αand VEGF-A,which are positively correlated with the concentration of hUCMSCs exosomes.HUCMSCs exosomes can effectively reduce the number of retinal neovascularization and the expression of HIF-1αand VEGF-A proteins in ROP mice,and are positively correlated with drug dosage.Besides,they can reduce the related factors on the PI3K/AKT/mTOR signaling pathway. 展开更多
关键词 human umbilical cord mesenchymal stem cells retinal astrocytes retinopathy of prematurity vascular endothelial growth factor hypoxia inducible factor
下载PDF
Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cell transplantation improves hypoxic-ischemic brain injury 被引量:3
2
作者 Dengna Zhu Yanjie Jia +3 位作者 Jun Wang Boai Zhang Guohui Niu Yazhen Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第19期1445-1451,共7页
Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cells were transplanted into a hypoxic-ischemic neonatal rat model via the tail vein. BrdU-positive cells at day 7 post-transplantation, ... Human insulin-like growth factor 1-transfected umbilical cord blood neural stem cells were transplanted into a hypoxic-ischemic neonatal rat model via the tail vein. BrdU-positive cells at day 7 post-transplantation, as well as nestin- and neuron specific enolase-positive cells at day 14 were increased compared with those of the single neural stem cell transplantation group. In addition, the proportion of neuronal differentiation was enhanced. The genetically modified cell-transplanted rats exhibited enhanced performance in correctly crossing a Y-maze and climbing an angled slope compared with those of the single neural stem cell transplantation group. These results showed that human insulin-like growth factor 1-transfected neural stem cell transplantation promotes the recovery of the leaming, memory and motor functions in hypoxic-ischemic rats. 展开更多
关键词 human insulin-like growth factor 1 neural stem cell hypoxic-ischemic brain damage TRANSPLANTATION neural regeneration
下载PDF
Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells 被引量:2
3
作者 Yan Zhang Junmei Zhou +2 位作者 Zhenfu Fang Manxi Jiang Xuejin Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第23期2171-2177,共7页
The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibro... The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen- tiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro- scope. Immunofluorescence staining revealed expression levels of Nestin, [3-111 Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in- creases the differentiation of neural precursors. 展开更多
关键词 neural regeneration stem cells basic fibroblast growth factor NOGGIN human embryonic stem cells neural precursors neural differentiation grants-supported paper NEUROREGENERATION
下载PDF
Human umbilical cord blood stem cells and brainderived neurotrophic factor for optic nerve injury: a biomechanical evaluation 被引量:13
4
作者 Zhong-jun Zhang Ya-jun Li +5 位作者 Xiao-guang Liu Feng-xiao Huang Tie-jun Liu Dong-mei Jiang Xue-man Lv Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第7期1134-1138,共5页
Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit model... Treatment for optic nerve injury by brain-derived neurotrophic factor or the transplantation of human umbilical cord blood stem cells has gained progress, but analysis by biomechanical indicators is rare. Rabbit models of optic nerve injury were established by a clamp. At 7 days after injury, the vitreous body received a one-time injection of 50 μg brain-derived neurotrophic factor or 1 × 10^6 human umbilical cord blood stem cells. After 30 days, the maximum load, maximum stress, maximum strain, elastic limit load, elastic limit stress, and elastic limit strain had clearly improved in rabbit models of optical nerve injury after treatment with brain-derived neurotrophic factor or human umbilical cord blood stem cells. The damage to the ultrastructure of the optic nerve had also been reduced. These findings suggest that human umbilical cord blood stem cells and brain-derived neurotrophic factor effectively repair the injured optical nerve, improve biomechanical properties, and contribute to the recovery after injury. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood stem cells brain-derived neurotrophic factor biomechanical properties neural regeneration
下载PDF
Human umbilical cord blood-derived stem cells and brain-derived neurotrophic factor protect injured optic nerve:viscoelasticity characterization 被引量:10
5
作者 Xue-man Lv Yan Liu +2 位作者 Fei Wu Yi Yuan Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第4期652-656,共5页
The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation a... The optic nerve is a viscoelastic solid-like biomaterial.Its normal stress relaxation and creep properties enable the nerve to resist constant strain and protect it from injury.We hypothesized that stress relaxation and creep properties of the optic nerve change after injury.Moreover,human brain-derived neurotrophic factor or umbilical cord blood-derived stem cells may restore these changes to normal.To validate this hypothesis,a rabbit model of optic nerve injury was established using a clamp approach.At 7 days after injury,the vitreous body received a one-time injection of 50 μg human brain-derived neurotrophic factor or 1 × 106 human umbilical cord blood-derived stem cells.At 30 days after injury,stress relaxation and creep properties of the optic nerve that received treatment had recovered greatly,with pathological changes in the injured optic nerve also noticeably improved.These results suggest that human brain-derived neurotrophic factor or umbilical cord blood-derived stem cell intervention promotes viscoelasticity recovery of injured optic nerves,and thereby contributes to nerve recovery. 展开更多
关键词 nerve regeneration optic nerve injury human umbilical cord blood-derived stem cells brain-derived neurotrophic factors creep histomorphology stress relaxation viscoelasticity neural regeneration
下载PDF
Tumor necrosis factor-αinhibition restores matrix formation by human adipose-derived stem cells in the late stage of chondrogenic differentiation
6
作者 Jiang-Tao Wan Xian-Shuai Qiu +2 位作者 Zhuo-Hang Fu Yong-Can Huang Shao-Xiong Min 《World Journal of Stem Cells》 SCIE 2022年第11期798-814,共17页
BACKGROUND Cartilage tissue engineering is a promising strategy for treating cartilage damage.Matrix formation by adipose-derived stem cells(ADSCs),which are one type of seed cell used for cartilage tissue engineering... BACKGROUND Cartilage tissue engineering is a promising strategy for treating cartilage damage.Matrix formation by adipose-derived stem cells(ADSCs),which are one type of seed cell used for cartilage tissue engineering,decreases in the late stage of induced chondrogenic differentiation in vitro,which seriously limits research on ADSCs and their application.AIM To improve the chondrogenic differentiation efficiency of ADSCs in vitro,and optimize the existing chondrogenic induction protocol.METHODS Tumor necrosis factor-alpha(TNF-α)inhibitor was added to chondrogenic culture medium,and then Western blotting,enzyme linked immunosorbent assay,immunofluorescence and toluidine blue staining were used to detect the cartilage matrix secretion and the expression of key proteins of nuclear factor kappa-B(NF-κB)signaling pathway.RESULTS In this study,we found that the levels of TNF-αand matrix metalloproteinase 3 were increased during the chondrogenic differentiation of ADSCs.TNF-αthen bound to its receptor and activated the NF-κB pathway,leading to a decrease in cartilage matrix synthesis and secretion.Blocking TNF-αwith its inhibitors etanercept(1μg/mL)or infliximab(10μg/mL)significantly restored matrix formation.CONCLUSION Therefore,this study developed a combination of ADSC therapy and targeted anti-inflammatory drugs to optimize the chondrogenesis of ADSCs,and this approach could be very beneficial for translating ADSC-based approaches to treat cartilage damage. 展开更多
关键词 Adipose-derived mesenchymal stem cells human adipose-derived mesenchymal stem cells Chondrogenic differentiation Tumor necrosis factor-alpha ETANERCEPT INFLIXIMAB Nuclear factor kappa-B
下载PDF
Chondrogenic differentiation of human bone mesenchymal stem cells treated with growth differentiation factor 5 under hypoxia
7
作者 张波 《外科研究与新技术》 2011年第2期129-130,共2页
Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation ... Objective To explore the feasibility and effectiveness of the self-assembly cartilage tissue engineered with chondrogenically differentiated human bone mesenchymal stem cells (hBMCs) induced by growth differentiation factor-5 (GDF-5) 展开更多
关键词 BONE Chondrogenic differentiation of human bone mesenchymal stem cells treated with growth differentiation factor 5 under hypoxia
下载PDF
Human umbilical cord mesenchymal stem cells promote peripheral nerve repair via paracrine mechanisms 被引量:26
8
作者 Zhi-yuan Guo Xun Sun +3 位作者 Xiao-long Xu Qing Zhao Jiang Peng Yu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期651-658,共8页
Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regen... Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) represent a promising young-state stem cell source for cell-based therapy. hUCMSC transplantation into the transected sciatic nerve promotes axonal regeneration and functional recovery. To further clarify the para-crine effects of hUCMSCs on nerve regeneration, we performed human cytokine antibody array analysis, which revealed that hUCMSCs express 14 important neurotrophic factors. Enzyme-linked immunosorbent assay and immunohistochemistry showed that brain-derived neurotrophic factor, glial-derived neurotrophic factor, hepatocyte growth factor, neurotrophin-3, basic fibroblast growth factor, type I collagen, fibronectin and laminin were highly expressed. Treatment with hUCMSC-conditioned medium enhanced Schwann cell viability and proliferation, increased nerve growth factor and brain-derived neurotrophic factor expression in Schwann cells, and enhanced neurite growth from dorsal root ganglion explants. These ifndings suggest that paracrine action may be a key mechanism underlying the effects of hUCMSCs in peripheral nerve repair. 展开更多
关键词 nerve regeneration human umbilical cord-derived mesenchymal stem cells conditioned medium Schwann cells dorsal root ganglion AXONS peripheral nerve regeneration neurotrophic factors neural regeneration
下载PDF
Hepatogenic differentiation of mesenchymal stem cells induced by insulin like growth factor-Ⅰ 被引量:10
9
作者 Maryam Ayatollahi Masoud Soleimani +1 位作者 Seyed Ziaadin Tabei Maryam Kabir Salmani 《World Journal of Stem Cells》 SCIE CAS 2011年第12期113-121,共9页
AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow... AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes. 展开更多
关键词 MESENCHYMAL stem cell DIFFERENTIATION HEPATOCYTE INSULIN-LIKE growth factor 1 human
下载PDF
HNF-4α determines hepatic differentiation of human mesenchymal stem cells from bone marrow 被引量:9
10
作者 Mong-Liang Chen Kuan-Der Lee +5 位作者 Huei-Chun Huang Yue-Lin Tsai Yi-Chieh Wu Tzer-Min Kuo Cheng-Po Hu Chungming Chang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第40期5092-5103,共12页
AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induce... AIM: To investigate the differentiation status and key factors to facilitate hepatic differentiation of human bone-marrow-derived mesenchymal stem cells (MSCs). METHODS: Human MSCs derived from bone marrow were induced into hepatocyte-like cells following a previously published protocol. The differentiation status of the hepatocyte-like cells was compared with various human hepatoma cell lines. Overexpression of hepatocyte nuclear factor (HNF)-4α was mediated by adenovirus infection of these hepatocyte-like cells. The expression of interesting genes was then examined by either re-verse transcription-polymerase chain reaction (RT-PCR) or real-time RT-PCR methods. RESULTS: Our results demonstrated that the differentiation status of hepatocyte-like cells induced from human MSCs was relatively similar to poorly differentiated human hepatoma cell lines. Interestingly, the HNF-4 isoform in induced MSCs and poorly differentiated human hepatoma cell lines was identified as HNF4γ instead of HNF-4α. Overexpression of HNF-4α in induced MSCs significantly enhanced the expression level of hepatic-specific genes, liver-enriched transcription factors, and cytochrome P450 (P450) genes. CONCLUSION: Overexpression of HNF-4α improves the hepatic differentiation of human MSCs from bone marrow and is a simple way of providing better cell sources for clinical applications. 展开更多
关键词 Bone marrow Cytochrome P450 genes Differentiation of hepatocyte Hepatocyte nuclear factor 4 human mesenchymal stem cells
下载PDF
Transplantation of human umbilical cord blood mesenchymal stem cells to treat a rat model of traumatic brain injury 被引量:5
11
作者 Junjian Zhao Naiyao Chen +7 位作者 Na Shen Hui Zhao Dali Wang Jun Shi Yang Wang Xiufeng Cui Zhenyu Yan Hui Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第10期741-748,共8页
In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated arou... In the present study, human umbilical cord blood mesenchymal stem cells were injected into a rat model of traumatic brain injury via the tail vein. Results showed that 5-bromodeoxyuridine-labeled cells aggregated around the injury site, surviving up to 4 weeks post-transplantation. In addition, transplantation-related death did not occur, and neurological functions significantly improved. Histological detection revealed attenuated pathological injury in rat brain tissues following human umbilical cord blood mesenchymal stem cell transplantation. In addition, the number of apoptotic cells decreased. Immunohistochemistry and in situ hybridization showed increased expression of brain-derived neurotrophic factor, nerve growth factor, basic fibroblast growth factor, and vascular endothelial growth factor, along with increased microvessel density in surrounding areas of brain injury. Results demonstrated migration of transplanted human umbilical cord blood mesenchymal stem cells into the lesioned boundary zone of rats, as well as increased angiogenesis and expression of related neurotrophic factors in the lesioned boundary zone. 展开更多
关键词 ANGIOGENESIS basic fibroblast growth factor brain-derived neurotrophic factor human umbilical cord blood mesenchymal stem cells nerve growth factor traumatic brain injury vascular endothelial growth factor
下载PDF
Functional recovery and microenvironmental alterations in a rat model of spinal cord injury following human umbilical cord blood-derived mesenchymal stem cells transplantation 被引量:3
12
作者 Hongtao Zhang Huilin Yang +1 位作者 Huanxiang Zhang Jing Qu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第3期165-170,共6页
BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation duri... BACKGROUND: Transplantation of human umbilical cord blood-derived mesenchymal stem cells (MSCs) has been shown to benefit spinal cord injury (SCI) repair. However, mechanisms of microenvironmental regulation during differentiation of transplanted MSCs remain poorly understood. OBJECTIVE: To observe changes in nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and interleukin-8 (IL-8) expression following transplantation of human umbilical cord-derived MSCs, and to explore the association between microenvironment and neural functional recovery following MSCs transplantation. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Department of Orthopedics, First Affiliated Hospital of Soochow University from April 2005 to March 2007. MATERIALS: Human cord blood samples were provided by the Department of Gynecology and Obstetrics, First Affiliated Hospital of Soochow University. Written informed consent was obtained. METHODS: A total of 62 Wister rats were randomly assigned to control (n = 18), model (n = 22, SCI + PBS), and transplantation (n = 22, SCI + MSCs) groups. The rat SCI model was established using the weight compression method. MSCs were isolated from human umbilical cord blood and cultured in vitro for several passages. 5-bromodeoxyuridine (BrdU)-Iabeled MSCs (24 hours before injection) were intravascularly transplanted. MAIN OUTCOME MEASURES: The rats were evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor score and inclined plane tests. Transplanted cells were analyzed following immunohistochemistry. Enzyme-linked immunosorbant assay was performed to determine NGF, BDNF, and IL-8 levels prior to and after cell transplantation. RESULTS: A large number of BrdU-positive MSCs were observed in the SCI region of the transplantation group, and MSCs were evenly distributed in injured spinal cord tissue 1 week after transplantation. BBB score and inclined plane test results revealed significant functional improvement in the transplantation group compared to the model group (P 〈 0.05), which was maintained for 2-3 weeks. Compared to the model group, NGF and BDNF levels were significantly increased in the injured region following MSCs transplantation at 3 weeks (P 〈 0.05), but IL-8 levels remained unchanged (P 〉 0.05). CONCLUSION: MSCs transplantation increased NGF and BDNF expression in injured spinal cord tissue. MSCs could promote neurological function recovery in SCI rats by upregulating NGF expression and improving regional microenvironments. 展开更多
关键词 human umbilical cord blood-derived mesenchymal stem cells nerve growth factor brain-derived neurotrophic factor INTERLEUKIN-8 spinal cord injury neural stem cells neural regeneration
下载PDF
Overexpression of GATA binding protein 4 and myocyte enhancer factor 2C induces differentiation of mesenchymal stem cells into cardiac-like cells
13
作者 Syeda Saima Razzaq Irfan Khan +3 位作者 Nadia Naeem Asmat Salim Sumreen Begum Kanwal Haneef 《World Journal of Stem Cells》 SCIE 2022年第9期700-713,共14页
BACKGROUND Heart diseases are the primary cause of death all over the world.Following myocardial infarction,billions of cells die,resulting in a huge loss of cardiac function.Stem cell-based therapies have appeared as... BACKGROUND Heart diseases are the primary cause of death all over the world.Following myocardial infarction,billions of cells die,resulting in a huge loss of cardiac function.Stem cell-based therapies have appeared as a new area to support heart regeneration.The transcription factors GATA binding protein 4(GATA-4)and myocyte enhancer factor 2C(MEF2C)are considered prominent factors in the development of the cardiovascular system.AIM To explore the potential of GATA-4 and MEF2C for the cardiac differentiation of human umbilical cord mesenchymal stem cells(hUC-MSCs).METHODS hUC-MSCs were characterized morphologically and immunologically by the presence of specific markers of MSCs via immunocytochemistry and flow cytometry,and by their potential to differentiate into osteocytes and adipocytes.hUC-MSCs were transfected with GATA-4,MEF2C,and their combination to direct the differentiation.Cardiac differentiation was confirmed by semiquant itative real-time polymerase chain reaction and immunocytochemistry.RESULTS hUC-MSCs expressed specific cell surface markers CD105,CD90,CD44,and vimentin but lack the expression of CD45.The transcription factors GATA-4 and MEF2C,and their combination induced differentiation in hUC-MSCs with significant expression of cardiac genes i.e.,GATA-4,MEF2C,NK2 homeobox 5(NKX2.5),MHC,and connexin-43,and cardiac proteins GATA-4,NKX2.5,cardiac troponin T,and connexin-43.CONCLUSION Transfection with GATA-4,MEF2C,and their combination effectively induces cardiac differentiation in hUC-MSCs.These genetically modified MSCs could be a promising treatment option for heart diseases in the future. 展开更多
关键词 Heart disease GATA binding protein 4 Myocyte enhancer factor 2C Transcription factors DIFFERENTIATION human umbilical cord-mesenchymal stem cells
下载PDF
Effects of transplantation of human bone marrow mesenchymal stem cells in rats with liver failure
14
作者 Yang-Gang Yan Jin-Cai Wu +5 位作者 Jia-Cheng Chen Da-Feng Xu Cheng Chen Xing Li Sheng-Yi Tan Zhuo-Ri Li 《Journal of Hainan Medical University》 2020年第3期5-9,共5页
Objective: To investigate the effect of hepatic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) induced in vitro and transplanted into rats with liver failure via portal vein, and observe the chan... Objective: To investigate the effect of hepatic differentiation of human bone marrow mesenchymal stem cells (HBMSCs) induced in vitro and transplanted into rats with liver failure via portal vein, and observe the changes of liver function and pathological tissue. Method:After passage to the 6th generation in vitro, the hepatic differentiation was induced by HGFand EGF inducible factors. CCL4 acute liver failure model in rats were established, and randomly divided into 5 groups transplanted with differentiated stem cells via portal vein. These five groups included HGF-differentiated HBMSCs transplantation, EGF-differentiated HBMSCs transplantation, EGF+HGF-differentiated HBMSCs transplantation, non-differentiated HBMSCs transplantation, and non-HBMSCs transplantation. Liver function and pathological changes were detected. Results: Rats models survival, serum albumin, aminotransferase and coagulation indexes were observed at 12 h, 72 h, 7 d, 1 month and 2 months after treatment. The results showed that the survival and albumin, aminotransferase and coagulation function of rats were improved significantly after treatment in HGF-differentiated, EGF-differentiated, EGF+HGF-differentiated and non-differentiated transplantation groups, compared tothe non-HBMSCstransplantation group(P<0.05), while no significance was observed in above four groups(P>0.05).Pathological changes was ameliorated in the liver of rat models in HGF-, EGF-, EGF+HGF- and non-differentiated transplantation groups, compared to the non-HBMSCs transplantation group. Conclusion: Liver-differentiated BMSCs transplanted into rats with liver failure could effectively improve liver function and survival rate. 展开更多
关键词 human bone MARROW MESENCHYMAL stem cells INDUCIBLE factor HEPATIC differentiation stem cell TRANSPLANTATION
下载PDF
A comparative study on the transplantation of different concentrations of human umbilical mesenchymal cells into diabetic rats 被引量:9
15
作者 Jia-Hui Kong Dan Zheng +4 位作者 Song Chen Hong-Tao Duan Yue-Xin Wang Meng Dong Jian Song 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2015年第2期257-262,共6页
AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley... AIM: To observe the effects of intravitreal injections of different concentrations of human umbilical mesenchymal stem cells on retinopathy in rats with diabetes mellitus.METHODS: Healthy and adult male Sprague-Dawley(SD) rats were randomly assigned to a normal control group(group A), a diabetic retinopathy(DR) blank control group(group B), a high-concentration transplantation group(group C), a low-concentration transplantation group(group D) and a placebo transplantation group(group E). The expression of nerve growth factor(NGF)protein in the retinal layers was detected by immunohistochemical staining at 2, 4, 6 and 8wk.RESULTS: The expression of NGF was positive in group A and most positive in the retinal ganglion cell layer. In groups B and E, the expression of NGF was positive 2wk after transplantation and showed an increase in all layers. However, the level of expression had decreased in all layers at 4wk and was significantly reduced at 8wk. In groups C and D, the expression of NGF had increased at 2wk and continued to increase up to 8wk. The level of expression in group C was much higher than that in group D.CONCLUSION: DR can be improved by intravitreal injection of human umbilical mesenchymal stem cells.High concentrations of human umbilical mesenchymal stem cells confer a better protective effect on DR than low concentrations. 展开更多
关键词 diabetic retinopathy human umbilical mesenchymal stem cells nerve growth factor stem cell therapy
下载PDF
Acetylcholine secretion by motor neuron-like cells from umbilical cord mesenchymal stem cells 被引量:3
16
作者 Xueyuan Liu ehua Li +1 位作者 Dong Jiang Yan Fang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第22期2086-2092,共7页
Umbilical cord mesenchymal stem cells were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cells was induced with heparin and/or basic fi- broblast growth factor. Res... Umbilical cord mesenchymal stem cells were isolated by a double enzyme digestion method. The third passage of umbilical cord mesenchymal stem cells was induced with heparin and/or basic fi- broblast growth factor. Results confirmed that cell morphology did not change after induction with basic fibroblast growth factor alone. However, neuronal morphology was visible, and micro- tubule-associated protein-2 expression and acetylcholine levels increased following induction with heparin alone or heparin combined with basic fibroblast growth factor. Hb9 and choline acetyl- transferase expression was high following inductive with heparin combined with basic fibroblast growth factor. Results indicate that the inductive effect of basic fibroblast growth factor alone was not obvious. Heparin combined with basic fibroblast growth factor noticeably promoted the differen- tiation of umbilical cord mesenchymal stem cells into motor neuron-like cells. Simultaneously, um- bilical cord mesenchymal stem cells could secrete acetylcholine. 展开更多
关键词 neural regeneration stem cells human umbilical cord mesenchymal stem cell motor neuron HEPARIN basic fibroblast growth factor induction differentiation Hb9 ACETYLCHOLINE NEUROREGENERATION
下载PDF
Mesenchymal stem cells-derived exosomes ameliorate blue light stimulation in retinal pigment epithelium cells and retinal laser injury by VEGF-dependent mechanism 被引量:16
17
作者 Guang-Hui He Wei Zhang +4 位作者 Ying-Xue Ma Jing Yang Li Chen Jian Song Song Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2018年第4期559-566,共8页
AIM: To observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(h UCMSCs) on the expression of vascular endothelial growth factor-A(VEGF-A) in blue light injured human retina... AIM: To observe the effect of exosomes derived from human umbilical cord blood mesenchymal stem cells(h UCMSCs) on the expression of vascular endothelial growth factor-A(VEGF-A) in blue light injured human retinal pigment epithelial(RPE) cells and laser-induced choroidal neovascularization(CNV) in rats.METHODS: Exosomes were isolated from h UCMSCs and characterized by transmission electron microscope and Western blot. MSCs-derived exosomes were cultured with RPE cells exposed to blue light. The m RNA and protein expression of VEGF-A were determined by real time-polymerase chain reaction(PCR) and Western blot, respectively. Immunofluorescence assay was used for the detection of the expression level of VEGF-A. We injected different doses of MSCs-derived exosomes intravitreally to observe and compare their effects in a mouse model of laserinduced retinal injury. The histological structure of CNV in rats was inspected by hematoxylin-eosin(HE) staining and fundus fluorescein angiography. The expression of VEGF-A was detected by immunohistochemistry.RESULTS: Exosomes exhibited the typical characteristic morphology(cup-shaped) and size(diameter between 50 and 150 nm). The exosomes marker, CD63, and h UCMSCs marker, CD90, showed a robust presence. In vitro, MSCsderived exosomes downregulated the m RNA(Exo-L: t=6.485, 7.959, 9.286; Exo-M: t=7.517, 10.170, 13.413; Exo-H: t=10.317, 12.234, 14.592, P〈0.05) and protein(Exo-L: t=2.945, 4.477, 6.657; Exo-M: t=4.713, 6.421, 8.836; Exo-H:t=6.539, 12.194, 12.783; P〈0.05) expression of VEGF-A in RPE cells after blue light stimulation. In vivo, we found that the MSCs-derived exosomes reduced damage, distinctly downregulated VEGF-A(Exo-H: t=0.957, 1.382; P〈0.05), and gradually improved the histological structures of CNV for a better visual function(Exo-L: 0.346, Exo-M: 3.382, Exo-H: 8.571; P〈0.05). CONCLUSION: MSCs-derived exosomes ameliorate blue light stimulation in RPE cells and laser-induced retinal injury via downregulation of VEGF-A. 展开更多
关键词 exosome human umbilical cord mesenchymal stem cell retinal pigment epithelial cell choroidal neovascularization vascular endothelial growth factor
下载PDF
Transcription regulators differentiate mesenchymal stem cells into chondroprogenitors,and their in vivo implantation regenerated the intervertebral disc degeneration 被引量:2
18
作者 Shumaila Khalid Sobia Ekram +2 位作者 Asmat Salim G.Rasul Chaudhry Irfan Khan 《World Journal of Stem Cells》 SCIE 2022年第2期163-182,共20页
BACKGROUND Intervertebral disc degeneration(IVDD)is the leading cause of lower back pain.Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix(ECM).Mesenchymal stem... BACKGROUND Intervertebral disc degeneration(IVDD)is the leading cause of lower back pain.Disc degeneration is characterized by reduced cellularity and decreased production of extracellular matrix(ECM).Mesenchymal stem cells(MSCs)have been envisioned as a promising treatment for degenerative illnesses.Cell-based therapy using ECM-producing chondrogenic derivatives of MSCs has the potential to restore the functionality of the intervertebral disc(IVD).AIM To investigate the potential of chondrogenic transcription factors to promote differentiation of human umbilical cord MSCs into chondrocytes,and to assess their therapeutic potential in IVD regeneration.METHODS MSCs were isolated and characterized morphologically and immunologically by the expression of specific markers.MSCs were then transfected with Sox-9 and Six-1 transcription factors to direct differentiation and were assessed for chondrogenic lineage based on the expression of specific markers.These differentiated MSCs were implanted in the rat model of IVDD.The regenerative potential of transplanted cells was investigated using histochemical and molecular analyses of IVDs.RESULTS Isolated cells showed fibroblast-like morphology and expressed CD105,CD90,CD73,CD29,and Vimentin but not CD45 antigens.Overexpression of Sox-9 and Six-1 greatly enhanced the gene expression of transforming growth factor beta-1 gene,BMP,Sox-9,Six-1,and Aggrecan,and protein expression of Sox-9 and Six-1.The implanted cells integrated,survived,and homed in the degenerated intervertebral disc.Histological grading showed that the transfected MSCs regenerated the IVD and restored normal architecture.CONCLUSION Genetically modified MSCs accelerate cartilage regeneration,providing a unique opportunity and impetus for stem cell-based therapeutic approach for degenerative disc diseases. 展开更多
关键词 Intervertebral disc degeneration human umbilical cord Transcription factors Mesenchymal stem cells Gene expression REGENERATION
下载PDF
Involvement of VLA-5 and VLA-6 in facilitating endothelium-oriented transmigration of hematopoietic stem/progenitor cells 被引量:1
19
作者 JINLing WANGWei-zhong LIChun-jiang 《吉林大学学报(医学版)》 CAS CSCD 北大核心 2003年第3期249-254,共6页
目的 :研究 VLA- 5及 VLA- 6是否参与内皮细胞促进的造血干 /祖细胞定向移行。方法 :对纯化人 CD34+ 细胞进行体外移行及阻断实验 ,观察其穿移覆盖人脐静脉内皮细胞 ( HUVECs)滤膜的能力。应用四色荧光活化流式细胞术 ( FACS)检测 CD34... 目的 :研究 VLA- 5及 VLA- 6是否参与内皮细胞促进的造血干 /祖细胞定向移行。方法 :对纯化人 CD34+ 细胞进行体外移行及阻断实验 ,观察其穿移覆盖人脐静脉内皮细胞 ( HUVECs)滤膜的能力。应用四色荧光活化流式细胞术 ( FACS)检测 CD34+细胞其粘附分子及趋化因子受体CXCR- 4的表达谱。结果 :基质由来因子 ( SDF) - 1 α介导的动员外周血 ( m PB)及骨髓 ( BM)来源的CD34+ 细胞穿透覆盖 HUVECs滤膜百分率分别为 ( 5 6.6± 2 0 .1 ) %及 ( 1 5 .6± 1 .8) % ,显著高于其穿移未覆盖 HUVECs滤膜的比率。预先对 CD34+ 细胞进行抗 VLA- 5和 /或 VLA- 6中和抗体处理可消除这一促进效应。此外 ,BM来源的 CD34+细胞其穿移覆盖及未覆盖 HUVECs滤膜的能力均显著低于 m PB CD34+细胞 ,两者间穿移能力的差异与其 VLA- 5及 VLA- 6(而非 VLA- 4及趋化因子受体 CXCR- 4)抗原表达水平相关。结论 :VLA- 5和 VLA- 6参与 HUVECs促进 HS/PCs穿移能力。 展开更多
关键词 落户 穿内皮移行 人脐静脉内皮细胞 基质衍生因子-1α 造血干/祖细胞 晚期激活抗原-5 晚期激活抗原-6
下载PDF
Insulin resistance in diabetes: The promise of using induced pluripotent stem cell technology
20
作者 Ahmed K Elsayed Selvaraj Vimalraj +1 位作者 Manjula Nandakumar Essam M Abdelalim 《World Journal of Stem Cells》 SCIE 2021年第3期221-235,共15页
Insulin resistance(IR)is associated with several metabolic disorders,including type 2 diabetes(T2D).The development of IR in insulin target tissues involves genetic and acquired factors.Persons at genetic risk for T2D... Insulin resistance(IR)is associated with several metabolic disorders,including type 2 diabetes(T2D).The development of IR in insulin target tissues involves genetic and acquired factors.Persons at genetic risk for T2D tend to develop IR several years before glucose intolerance.Several rodent models for both IR and T2D are being used to study the disease pathogenesis;however,these models cannot recapitulate all the aspects of this complex disorder as seen in each individual.Human pluripotent stem cells(hPSCs)can overcome the hurdles faced with the classical mouse models for studying IR.Human induced pluripotent stem cells(hiPSCs)can be generated from the somatic cells of the patients without the need to destroy a human embryo.Therefore,patient-specific hiPSCs can generate cells genetically identical to IR individuals,which can help in distinguishing between genetic and acquired defects in insulin sensitivity.Combining the technologies of genome editing and hiPSCs may provide important information about the genetic factors underlying the development of different forms of IR.Further studies are required to fill the gaps in understanding the pathogenesis of IR and diabetes.In this review,we summarize the factors involved in the development of IR in the insulin-target tissues leading to diabetes.Also,we highlight the use of hPSCs to understand the mechanisms underlying the development of IR. 展开更多
关键词 Type 2 diabetes Insulin target tissues human pluripotent stem cells Induced pluripotent stem cells Genetic factors Disease modeling
下载PDF
上一页 1 2 20 下一页 到第
使用帮助 返回顶部