期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Recent Advances and Challenges of Visual Signal Quality Assessment 被引量:1
1
作者 马林 邓宸伟 +1 位作者 颜庆义 林维斯 《China Communications》 SCIE CSCD 2013年第5期62-78,共17页
While quality assessment is essential for testing, optimizing, benchmarking, monitoring, and inspecting related systems and services, it also plays an essential role in the design of virtually all visual signal proces... While quality assessment is essential for testing, optimizing, benchmarking, monitoring, and inspecting related systems and services, it also plays an essential role in the design of virtually all visual signal processing and communication algorithms, as well as various related decision-making processes. In this paper, we first provide an overview of recently derived quality assessment approaches for traditional visual signals (i.e., 2D images/videos), with highlights for new trends (such as machine learning approaches). On the other hand, with the ongoing development of devices and multimedia services, newly emerged visual signals (e.g., mobile/3D videos) are becoming more and more popular. This work focuses on recent progresses of quality metrics, which have been reviewed for the newly emerged forms of visual signals, which include scalable and mobile videos, High Dynamic Range (HDR) images, image segmentation results, 3D images/videos, and retargeted images. 展开更多
关键词 objective quality assessment 2D images and videos human perception newly emerged visual signals human visual system
下载PDF
Objective measurement for image defogging algorithms 被引量:4
2
作者 郭璠 唐琎 蔡自兴 《Journal of Central South University》 SCIE EI CAS 2014年第1期272-286,共15页
Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One w... Since there is lack of methodology to assess the performance of defogging algorithm and the existing assessment methods have some limitations,three new methods for assessing the defogging algorithm were proposed.One was using synthetic foggy image simulated by image degradation model to assess the defogging algorithm in full-reference way.In this method,the absolute difference was computed between the synthetic image with and without fog.The other two were computing the fog density of gray level image or constructing assessment system of color image from human visual perception to assess the defogging algorithm in no-reference way.For these methods,an assessment function was defined to evaluate algorithm performance from the function value.Using the defogging algorithm comparison,the experimental results demonstrate the effectiveness and reliability of the proposed methods. 展开更多
关键词 image defogging algorithm image assessment simulated foggy image fog density human visual perception
下载PDF
Visual perception driven collage synthesis 被引量:1
3
作者 Zuyi Yang Qinghui Dai Junsong Zhang 《Computational Visual Media》 SCIE EI CSCD 2022年第1期79-91,共13页
A collage is a composite artwork made from the spatial layout of multiple pictures on a canvas,collected from the Internet or user photographs.Collages,usually made by skilled artists,involve a complex manual process,... A collage is a composite artwork made from the spatial layout of multiple pictures on a canvas,collected from the Internet or user photographs.Collages,usually made by skilled artists,involve a complex manual process,especially when searching for component pictures and adjusting their spatial layout to meet artistic requirements.In this paper,we present a visual perception driven method for automatically synthesizing visually pleasing collages.Unlike previous works,we focus on how to design a collage layout which not only provides easy access to the theme of the overall image,but also conforms to human visual perception.To achieve this goal,we formulate the generation of collages as a mapping problem:given a canvas image,first,compute a saliency map for it and a vector field for each sub-region of it.Second,using a divide-and-conquer strategy,generate a series of patch sets from the canvas image,where the salient map and the vector field are used to determine each patch’s size and direction respectively.Third,construct a Gestalt-based energy function to choose the most visually pleasing and orderly patch set as the final layout.Finally,using a semantic-color metric,map the picture set to the patch set to generate the final collage.Extensive experimental and user study results show that this method can generate visual pleasing collages. 展开更多
关键词 COLLAGE gestalt psychology saliency map layout optimization human visual perception
原文传递
Image Dehazing Based on Pixel Guided CNN with PAM via Graph Cut
4
作者 Fayadh Alenezi 《Computers, Materials & Continua》 SCIE EI 2022年第5期3425-3443,共19页
Image dehazing is still an open research topic that has been undergoing a lot of development,especially with the renewed interest in machine learning-based methods.A major challenge of the existing dehazing methods is... Image dehazing is still an open research topic that has been undergoing a lot of development,especially with the renewed interest in machine learning-based methods.A major challenge of the existing dehazing methods is the estimation of transmittance,which is the key element of haze-affected imaging models.Conventional methods are based on a set of assumptions that reduce the solution search space.However,the multiplication of these assumptions tends to restrict the solutions to particular cases that cannot account for the reality of the observed image.In this paper we reduce the number of simplified hypotheses in order to attain a more plausible and realistic solution by exploiting a priori knowledge of the ground truth in the proposed method.The proposed method relies on pixel information between the ground truth and haze image to reduce these assumptions.This is achieved by using ground truth and haze image to find the geometric-pixel information through a guided Convolution Neural Networks(CNNs)with a Parallax Attention Mechanism(PAM).It uses the differential pixel-based variance in order to estimate transmittance.The pixel variance uses local and global patches between the assumed ground truth and haze image to refine the transmission map.The transmission map is also improved based on improved Markov random field(MRF)energy functions.We used different images to test the proposed algorithm.The entropy value of the proposed method was 7.43 and 7.39,a percent increase of4.35%and5.42%,respectively,compared to the best existing results.The increment is similar in other performance quality metrics and this validate its superiority compared to other existing methods in terms of key image quality evaluation metrics.The proposed approach’s drawback,an over-reliance on real ground truth images,is also investigated.The proposed method show more details hence yields better images than those from the existing state-of-the-art-methods. 展开更多
关键词 Pixel information human visual perception convolution neural network graph cut parallax attention mechanism
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部