Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane a...Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.展开更多
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ...In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.展开更多
Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and...Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.展开更多
Objective: To analyze the effect of problem-oriented nursing intervention on patients with lower extremity arteriosclerosis obliterans (ASO) in vascular surgery. Methods: The clinical data of 128 patients with lower e...Objective: To analyze the effect of problem-oriented nursing intervention on patients with lower extremity arteriosclerosis obliterans (ASO) in vascular surgery. Methods: The clinical data of 128 patients with lower extremity ASO in vascular surgery were selected and randomly divided into groups A and B, with 64 cases each. Group A is the control group, and Group B is the observation group. Group A received the routine nursing intervention, and Group B received the problem-oriented nursing intervention. The compliance, self-care ability, psychological state, quality of life, and nursing satisfaction of the two groups of patients were evaluated based on various indicators. Results: After the intervention, the evaluation of self-care ability (ESCA) score of the patients in Group B was higher than that of Group A, and the symptom checklist-90 (SCL-90) score was lower than that of Group A. The differences were significant (t = 10.019, t = 3.118, P < 0.01). After the intervention, the World Health Organization Quality of Life Brief (WHOQOL-BREF) index scores of the two groups increased and the increase in Group B was significantly higher than Group A (P < 0.001). The compliance rate of Group B (62/ 96.88%) was higher than that of Group A (52/ 81.25%), and the difference was extremely significant (χ2 = 8.020, P < 0.01). Conclusion: Problem-oriented nursing intervention for patients with lower extremity ASO in vascular surgery improved the patient’s self-care ability, and quality of life, reduced the patient’s negative emotions, and enhanced their overall satisfaction.展开更多
Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to o...Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to our hospital from January 2023 to December 2023 were randomly divided into two groups, the control group (50 cases) was given task-oriented training assisted by nurses, and the observation group (50 cases) was given lower limb rehabilitation robot with task-oriented training. Lower limb balance, lower limb muscle strength, motor function, ankle function, knee flexion range of motion and walking ability were observed. Results: After treatment, the scores of BBS, quadriceps femoris and hamstrings in the observation group were significantly higher than those in the control group (P Conclusion: In the clinical treatment of stroke patients, the combination of task-oriented training and lower limb rehabilitation robot can effectively improve the lower limb muscle strength, facilitate the recovery of balance function, and have a significant effect on the recovery of motor function, which can improve the walking ability of stroke patients and the range of motion of knee flexion, and achieve more ideal therapeutic effectiveness.展开更多
Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detecti...Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.展开更多
The inherent shortcomings of a zinc anode in aqueous zinc‐ion batteries(ZIBs)such as zinc dendrites and side reactions severely limit their practical application.Herein,to address these issues,an ion‐oriented transp...The inherent shortcomings of a zinc anode in aqueous zinc‐ion batteries(ZIBs)such as zinc dendrites and side reactions severely limit their practical application.Herein,to address these issues,an ion‐oriented transport channel constructed by graphdiyne(GDY)nanowalls is designed and grown in situ on the surface of a zinc electrode.The vertically stacked GDY nanowalls with a unique hierarchical porous structure and mechanical properties form a nanomesh‐like interface on the zinc electrode,acting as an ion‐oriented channel,which can efficiently confine the segmented growth of zinc metal in microscopic regions of hundreds of nanometers.In those microscopic regions,the uniform domain current density is effortlessly maintained compared with a large surface area,thereby inhibiting zinc dendrites effectively.Besides,due to the presence of the ion‐oriented channel,the modified zinc anode demonstrates long‐term stable zinc plating/stripping performance for more than 600 h at 1 mAh cm^(−2)in an aqueous electrolyte.In addition,full‐cells coupled with MnO2 show high specific capacity and power density,as well as excellent cycling stability with a capacity retention of 82%after 5000 cycles at 1 A g^(−1).This work provides a feasible and accessible surface engineering approach to modify the electrode interface for confined and dendrite‐free zinc deposition in aqueous ZIBs.展开更多
There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote...There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.展开更多
This study explores the epitaxial relationship and electrical properties of α-Ga_(2)O_(3) thin films deposited on a-plane, mplane, and r-plane sapphire substrates. We characterize the thin films by X-ray diffraction ...This study explores the epitaxial relationship and electrical properties of α-Ga_(2)O_(3) thin films deposited on a-plane, mplane, and r-plane sapphire substrates. We characterize the thin films by X-ray diffraction and Raman spectroscopy, and elucidate thin film epitaxial relationships with the underlying sapphire substrates. The oxygen vacancy concentration of α-Ga_(2)O_(3) thin films on m-plane and r-plane sapphire substrates are higher than α-Ga_(2)O_(3) thin film on a-plane sapphire substrates. All three thin films have a high transmission of over 80% in the visible and near-ultraviolet regions, and their optical bandgaps stay around 5.02–5.16 eV. Hall measurements show that the α-Ga_(2)O_(3) thin film grown on r-plane sapphire has the highest conductivity of 2.71 S/cm, which is at least 90 times higher than the film on a-plane sapphire. A similar orientation-dependence is seen in their activation energy as revealed by temperature-dependent conductivity measurements, with 0.266, 0.079, and 0.075eV for the film on a-, m-, r-plane, respectively. The origin of the distinct transport behavior of films on differently oriented substrates is suggested to relate with the distinct evolution of oxygen vacancies at differently oriented substrates. This study provides insights for the substrate selection when growing α-Ga_(2)O_(3) films with tunable transport properties.展开更多
Several possible definitions of local injectivity for a homomorphism of an oriented graph G to an oriented graph H are considered. In each case, we determine the complexity of deciding whether there exists such a homo...Several possible definitions of local injectivity for a homomorphism of an oriented graph G to an oriented graph H are considered. In each case, we determine the complexity of deciding whether there exists such a homomorphism when G is given and H is a fixed tournament on three or fewer vertices. Each possible definition leads to a locally-injective oriented colouring problem. A dichotomy theorem is proved in each case.展开更多
Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation en...Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.展开更多
Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogene...Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.展开更多
BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemis...BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemistry(IHC)positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC.CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn’t have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment.A novel combination therapy PRaG 3.0 of RC48(HER2-antibody-drug conjugate),radio-therapy,PD-1 inhibitor,granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month.She had not developed any grade 2 or above treatment-related adverse events at any point.Percentage of peripheral CD8^(+) Temra and CD4^(+) Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy.CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.展开更多
Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alle...Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.展开更多
BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of canc...BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.展开更多
Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not...Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
基金National Natural Science Foundation of China(22078039)Science Fund for Creative Research Groups of the National Natural Science Foundation of China(22021005)+1 种基金National Key Research and Development Program of China(2023YFB3810700)the Fundamental Research Funds for the Central Universities(DUT22LAB602)。
文摘Preferential orientation control of metal—organic framework(MOF)films is advantageous for maximizing pore uniformity and minimizing grain-boundary defects.Nonetheless,the preparation of MOF films with both in-plane and out-of-plane orientations remains a grand challenge.In this study,we reported the preparation of three-dimensionally oriented MIL-96 layers through combining morphology control of MIL-96 seeds with addition of polyvinylpyrrolidone surfactants and arachidonic acids.The three-dimensionally oriented MIL-96 film was readily obtained through in-plane epitaxial growth.It is anticipated that the aforementioned protocol can be effective for obtaining diverse MOF films with a three-dimensionally oriented organization.
文摘In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes.
基金support from the National Natural Science Foundation of China(Grant Nos.11974066,12174041,12104134,T2350007,and 12347178)the Fundamental and Advanced Research Program of Chongqing(Grant No.cstc2019jcyj-msxm X0477)+3 种基金the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX1260)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202301333)the Scientific Research Fund of Chongqing University of Arts and Sciences(Grant Nos.R2023HH03 and P2022HH05)College Students’Innovation and Entrepreneurship Training Program of Chongqing Municipal(Grant No.S202310642002)。
文摘Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.
文摘Objective: To analyze the effect of problem-oriented nursing intervention on patients with lower extremity arteriosclerosis obliterans (ASO) in vascular surgery. Methods: The clinical data of 128 patients with lower extremity ASO in vascular surgery were selected and randomly divided into groups A and B, with 64 cases each. Group A is the control group, and Group B is the observation group. Group A received the routine nursing intervention, and Group B received the problem-oriented nursing intervention. The compliance, self-care ability, psychological state, quality of life, and nursing satisfaction of the two groups of patients were evaluated based on various indicators. Results: After the intervention, the evaluation of self-care ability (ESCA) score of the patients in Group B was higher than that of Group A, and the symptom checklist-90 (SCL-90) score was lower than that of Group A. The differences were significant (t = 10.019, t = 3.118, P < 0.01). After the intervention, the World Health Organization Quality of Life Brief (WHOQOL-BREF) index scores of the two groups increased and the increase in Group B was significantly higher than Group A (P < 0.001). The compliance rate of Group B (62/ 96.88%) was higher than that of Group A (52/ 81.25%), and the difference was extremely significant (χ2 = 8.020, P < 0.01). Conclusion: Problem-oriented nursing intervention for patients with lower extremity ASO in vascular surgery improved the patient’s self-care ability, and quality of life, reduced the patient’s negative emotions, and enhanced their overall satisfaction.
文摘Objective: To explore the effect of lower limb rehabilitation robot combined with task-oriented training on stroke patients and its influence on KFAROM score. Methods: 100 stroke patients with hemiplegia admitted to our hospital from January 2023 to December 2023 were randomly divided into two groups, the control group (50 cases) was given task-oriented training assisted by nurses, and the observation group (50 cases) was given lower limb rehabilitation robot with task-oriented training. Lower limb balance, lower limb muscle strength, motor function, ankle function, knee flexion range of motion and walking ability were observed. Results: After treatment, the scores of BBS, quadriceps femoris and hamstrings in the observation group were significantly higher than those in the control group (P Conclusion: In the clinical treatment of stroke patients, the combination of task-oriented training and lower limb rehabilitation robot can effectively improve the lower limb muscle strength, facilitate the recovery of balance function, and have a significant effect on the recovery of motor function, which can improve the walking ability of stroke patients and the range of motion of knee flexion, and achieve more ideal therapeutic effectiveness.
文摘Structural development defects essentially refer to code structure that violates object-oriented design principles. They make program maintenance challenging and deteriorate software quality over time. Various detection approaches, ranging from traditional heuristic algorithms to machine learning methods, are used to identify these defects. Ensemble learning methods have strengthened the detection of these defects. However, existing approaches do not simultaneously exploit the capabilities of extracting relevant features from pre-trained models and the performance of neural networks for the classification task. Therefore, our goal has been to design a model that combines a pre-trained model to extract relevant features from code excerpts through transfer learning and a bagging method with a base estimator, a dense neural network, for defect classification. To achieve this, we composed multiple samples of the same size with replacements from the imbalanced dataset MLCQ1. For all the samples, we used the CodeT5-small variant to extract features and trained a bagging method with the neural network Roberta Classification Head to classify defects based on these features. We then compared this model to RandomForest, one of the ensemble methods that yields good results. Our experiments showed that the number of base estimators to use for bagging depends on the defect to be detected. Next, we observed that it was not necessary to use a data balancing technique with our model when the imbalance rate was 23%. Finally, for blob detection, RandomForest had a median MCC value of 0.36 compared to 0.12 for our method. However, our method was predominant in Long Method detection with a median MCC value of 0.53 compared to 0.42 for RandomForest. These results suggest that the performance of ensemble methods in detecting structural development defects is dependent on specific defects.
基金National Natural Science Foundation of China,Grant/Award Numbers:21701182,21771187,21790050,21790051,22005323Frontier Science Research Project of the Chinese Academy of Sciences,Grant/Award Number:QYZDB‐SSWJSC052+1 种基金Taishan Scholars Program of Shandong Province,Grant/Award Number:tsqn201812111ICCAS Institute Research Project。
文摘The inherent shortcomings of a zinc anode in aqueous zinc‐ion batteries(ZIBs)such as zinc dendrites and side reactions severely limit their practical application.Herein,to address these issues,an ion‐oriented transport channel constructed by graphdiyne(GDY)nanowalls is designed and grown in situ on the surface of a zinc electrode.The vertically stacked GDY nanowalls with a unique hierarchical porous structure and mechanical properties form a nanomesh‐like interface on the zinc electrode,acting as an ion‐oriented channel,which can efficiently confine the segmented growth of zinc metal in microscopic regions of hundreds of nanometers.In those microscopic regions,the uniform domain current density is effortlessly maintained compared with a large surface area,thereby inhibiting zinc dendrites effectively.Besides,due to the presence of the ion‐oriented channel,the modified zinc anode demonstrates long‐term stable zinc plating/stripping performance for more than 600 h at 1 mAh cm^(−2)in an aqueous electrolyte.In addition,full‐cells coupled with MnO2 show high specific capacity and power density,as well as excellent cycling stability with a capacity retention of 82%after 5000 cycles at 1 A g^(−1).This work provides a feasible and accessible surface engineering approach to modify the electrode interface for confined and dendrite‐free zinc deposition in aqueous ZIBs.
文摘There is an urgent need for small-diameter artificial blood vessels in clinic.Physical,chemical and biological factors should be integrated to avoid thrombosis and intimal hyperplasia after implantation and to promote successful fabrication of small-diameter artificial blood vessels.From a physical perspective,the internal oriented structures of natural blood vessels plays an important role in guiding the directional growth of cells,improving the blood flow environment,and promoting the regeneration of vascular tissue.In this review,the effects of the oriented structures on cells,including endothelial cells(ECs),smooth muscle cells(SMCs)and stem cells,as well as the effect of the oriented structures on hemodynamics and vascular tissue remodeling and regeneration are introduced.Various forms of oriented structures(fibers,grooves,channels,etc.)and their construction methods are also reviewed.Conclusions and future perspectives are given.It is expected to give some references to relevant researches.
基金supported by the Zhejiang Provincial Natural Science Foundation under (Grant No. LZ21F040001)the Pioneer Hundred Talents Program of Chinese Academy of Sciencesthe Ningbo Yongjiang Talent Introduction Programme and the Ningbo Key Scientific and Technological Project (Grant No. 2022Z016)。
文摘This study explores the epitaxial relationship and electrical properties of α-Ga_(2)O_(3) thin films deposited on a-plane, mplane, and r-plane sapphire substrates. We characterize the thin films by X-ray diffraction and Raman spectroscopy, and elucidate thin film epitaxial relationships with the underlying sapphire substrates. The oxygen vacancy concentration of α-Ga_(2)O_(3) thin films on m-plane and r-plane sapphire substrates are higher than α-Ga_(2)O_(3) thin film on a-plane sapphire substrates. All three thin films have a high transmission of over 80% in the visible and near-ultraviolet regions, and their optical bandgaps stay around 5.02–5.16 eV. Hall measurements show that the α-Ga_(2)O_(3) thin film grown on r-plane sapphire has the highest conductivity of 2.71 S/cm, which is at least 90 times higher than the film on a-plane sapphire. A similar orientation-dependence is seen in their activation energy as revealed by temperature-dependent conductivity measurements, with 0.266, 0.079, and 0.075eV for the film on a-, m-, r-plane, respectively. The origin of the distinct transport behavior of films on differently oriented substrates is suggested to relate with the distinct evolution of oxygen vacancies at differently oriented substrates. This study provides insights for the substrate selection when growing α-Ga_(2)O_(3) films with tunable transport properties.
文摘Several possible definitions of local injectivity for a homomorphism of an oriented graph G to an oriented graph H are considered. In each case, we determine the complexity of deciding whether there exists such a homomorphism when G is given and H is a fixed tournament on three or fewer vertices. Each possible definition leads to a locally-injective oriented colouring problem. A dichotomy theorem is proved in each case.
基金the financial support from the National Key R&D program of China(2021YFF0500501 and 2021YFF0500504)the Fundamental Research Funds for the Central Universities(YJS2213 and JB211408)+1 种基金the National Natural Science Foundation of China(61874083)the Joint Research Funds of Department of Science&Technology of Shaanxi Province and Northwestern Polytechnical University(No.2020GXLH-Z-014)
文摘Low-temperature,ambient processing of high-quality CsPbBr_(3)films is demanded for scalable production of efficient,low-cost carbon-electrode perovskite solar cells(PSCs).Herein,we demonstrate a crystal orientation engineering strategy of PbBr_(2)precursor film to accelerate its reaction with CsBr precursor during two-step sequential deposition of CsPbBr_(3)films.Such a novel strategy is proceeded by adding CsBr species into PbBr_(2)precursor,which can tailor the preferred crystal orientation of PbBr_(2)film from[020]into[031],with CsBr additive staying in the film as CsPb_(2)Br_(5)phase.Theoretical calculations show that the reaction energy barrier of(031)planes of PbBr_(2)with CsBr is lower about 2.28 eV than that of(O2O)planes.Therefore,CsPbBr_(3)films with full coverage,high purity,high crystallinity,micro-sized grains can be obtained at a low temperature of 150℃.Carbon-electrode PSCs with these desired CsPbBr_(3)films yield the record-high efficiency of 10.27%coupled with excellent operation stability.Meanwhile,the 1 cm^(2)area one with the superior efficiency of 8.00%as well as the flexible one with the champion efficiency of 8.27%and excellent mechanical bending characteristics are also achieved.
基金the National Natural Science Foundation of China,No.82360148Guizhou Science&Technology Department,No.QKHPTRC2018-5636-2 and No.QKHPTRC2020-2201.
文摘Human pluripotent stem cell(hPSC)-derived kidney organoids share similarities with the fetal kidney.However,the current hPSC-derived kidney organoids have some limitations,including the inability to perform nephrogenesis and lack of a corticomedullary definition,uniform vascular system,and coordinated exit path-way for urinary filtrate.Therefore,further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development,regeneration,disease modeling,and drug screening.In this review,we discussed recent advances in the generation of hPSC-derived kidney organoids,how these organoids contribute to the understanding of human kidney development and research in disease modeling.Additionally,the limitations,future research focus,and applications of hPSC-derived kidney organoids were highlighted.
基金the Suzhou Medical Center,No.Szlcyxzx202103the National Natural Science Foundation of China,No.82171828+9 种基金the Key R&D Plan of Jiangsu Province(Social Development),No.BE2021652the Subject Construction Support Project of The Second Affiliated Hospital of Soochow University,No.XKTJHRC20210011Wu Jieping Medical Foundation,No.320.6750.2021-01-12the Special Project of“Technological Innovation”Project of CNNC Medical Industry Co.Ltd,No.ZHYLTD2021001Suzhou Science and Education Health Project,No.KJXW2021018Foundation of Chinese Society of Clinical Oncology,No.Y-pierrefabre202102-0113Beijing Bethune Charitable Foundation,No.STLKY0016Research Projects of China Baoyuan Investment Co.,No.270004Suzhou Gusu Health Talent Program,No.GSWS2022028Open Project of State Key Laboratory of Radiation Medicine and Protection of Soochow University,No.GZN1202302.
文摘BACKGROUND Pancreatic ductal adenocarcinoma(PDAC)is a highly fatal disease with limited effective treatment especially after first-line chemotherapy.The human epidermal growth factor receptor 2(HER-2)immunohistochemistry(IHC)positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC.CASE SUMMARY We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn’t have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment.A novel combination therapy PRaG 3.0 of RC48(HER2-antibody-drug conjugate),radio-therapy,PD-1 inhibitor,granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month.She had not developed any grade 2 or above treatment-related adverse events at any point.Percentage of peripheral CD8^(+) Temra and CD4^(+) Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy.CONCLUSION PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.
文摘Pulmonary diseases across all ages threaten millions of people and have emerged as one of the major public health issues worldwide.For diverse disease con-ditions,the currently available approaches are focused on alleviating clinical symptoms and delaying disease progression but have not shown significant therapeutic effects in patients with lung diseases.Human umbilical cord-derived mesenchymal stem cells(UC-MSCs)isolated from the human UC have the capacity for self-renewal and multilineage differentiation.Moreover,in recent years,these cells have been demonstrated to have unique advantages in the treatment of lung diseases.We searched the Public Clinical Trial Database and found 55 clinical trials involving UC-MSC therapy for pulmonary diseases,including coronavirus disease 2019,acute respiratory distress syndrome,bron-chopulmonary dysplasia,chronic obstructive pulmonary disease,and pulmonary fibrosis.In this review,we summarize the characteristics of these registered clinical trials and relevant published results and explore in depth the challenges and opportunitiesfaced in clinical application.Moreover,the underlying mole-cular mechanisms involved in UC-MSC-based therapy for pulmonary diseases are also analyzed in depth.In brief,this comprehensive review and detailed analysis of these clinical trials can be expected to provide a scientific reference for future large-scale clinical application.
基金Supported by National Natural Science Foundation of China,No.82360329Inner Mongolia Medical University General Project,No.YKD2023MS047Inner Mongolia Health Commission Science and Technology Plan Project,No.202201275.
文摘BACKGROUND Colorectal cancer has a low 5-year survival rate and high mortality.Humanβ-defensin-1(hBD-1)may play an integral function in the innate immune system,contributing to the recognition and destruction of cancer cells.Long non-coding RNAs(lncRNAs)are involved in the process of cell differentiation and growth.AIM To investigate the effect of hBD-1 on the mammalian target of rapamycin(mTOR)pathway and autophagy in human colon cancer SW620 cells.METHODS CCK8 assay was utilized for the detection of cell proliferation and determination of the optimal drug concentration.Colony formation assay was employed to assess the effect of hBD-1 on SW620 cell proliferation.Bioinformatics was used to screen potentially biologically significant lncRNAs related to the mTOR pathway.Additionally,p-mTOR(Ser2448),Beclin1,and LC3II/I expression levels in SW620 cells were assessed through Western blot analysis.RESULTS hBD-1 inhibited the proliferative ability of SW620 cells,as evidenced by the reduction in the colony formation capacity of SW620 cells upon exposure to hBD-1.hBD-1 decreased the expression of p-mTOR(Ser2448)protein and increased the expression of Beclin1 and LC3II/I protein.Furthermore,bioinformatics analysis identified seven lncRNAs(2 upregulated and 5 downregulated)related to the mTOR pathway.The lncRNA TCONS_00014506 was ultimately selected.Following the inhibition of the lncRNA TCONS_00014506,exposure to hBD-1 inhibited p-mTOR(Ser2448)and promoted Beclin1 and LC3II/I protein expression.CONCLUSION hBD-1 inhibits the mTOR pathway and promotes autophagy by upregulating the expression of the lncRNA TCONS_00014506 in SW620 cells.
基金supported by grants from the National Health and Medical Research Council(NHMRC)of Australia(Nos.571100 and 1048082)the Baxter Charitable Foundation(to TCL)+1 种基金Medical Research grants from the Rebecca L.Cooper Medical Research Foundation(to MWW,TCL,and MDL)supported by a Charles D.Kelman,M.D.Postdoctoral Award(2010)from the International Retinal Research Foundation(USA)。
文摘Roof plate secretion of bone morphogenetic proteins(BMPs)directs the cellular fate of sensory neurons during spinal cord development,including the formation of the ascending sensory columns,though their biology is not well understood.Type-ⅡBMP receptor(BMPRⅡ),the cognate receptor,is expressed by neural precursor cells during embryogenesis;however,an in vitro method of enriching BMPRⅡ^(+)human neural precursor cells(hNPCs)from the fetal spinal cord is absent.Immunofluorescence was undertaken on intact second-trimester human fetal spinal cord using antibodies to BMPRⅡand leukemia inhibitory factor(LIF).Regions of highest BMPRⅡ^(+)immunofluorescence localized to sensory columns.Parenchymal and meningeal-associated BMPRⅡ^(+)vascular cells were identified in both intact fetal spinal cord and cortex by co-positivity with vascular lineage markers,CD34/CD39.LIF immunostaining identified a population of somas concentrated in dorsal and ventral horn interneurons,mirroring the expression of LIF receptor/CD118.A combination of LIF supplementation and high-density culture maintained culture growth beyond 10 passages,while synergistically increasing the proportion of neurospheres with a stratified,cytoarchitecture.These neurospheres were characterized by BMPRⅡ^(+)/MAP2ab^(+/–)/βⅢ-tubulin^(+)/nestin^(–)/vimentin^(–)/GFAP^(–)/NeuN^(–)surface hNPCs surrounding a heterogeneous core ofβⅢ-tubulin^(+)/nestin^(+)/vimentin^(+)/GFAP^(+)/MAP2ab^(–)/NeuN^(–)multipotent precursors.Dissociated cultures from tripotential neurospheres contained neuronal(βⅢ-tubulin^(+)),astrocytic(GFAP+),and oligodendrocytic(O4+)lineage cells.Fluorescence-activated cell sorting-sorted BMPRⅡ^(+)hNPCs were MAP2ab^(+/–)/βⅢ-tubulin^(+)/GFAP^(–)/O4^(–)in culture.This is the first isolation of BMPRⅡ^(+)hNPCs identified and characterized in human fetal spinal cords.Our data show that LIF combines synergistically with high-density reaggregate cultures to support the organotypic reorganization of neurospheres,characterized by surface BMPRⅡ^(+)hNPCs.Our study has provided a new methodology for an in vitro model capable of amplifying human fetal spinal cord cell numbers for>10 passages.Investigations of the role BMPRⅡplays in spinal cord development have primarily relied upon mouse and rat models,with interpolations to human development being derived through inference.Because of significant species differences between murine biology and human,including anatomical dissimilarities in central nervous system(CNS)structure,the findings made in murine models cannot be presumed to apply to human spinal cord development.For these reasons,our human in vitro model offers a novel tool to better understand neurodevelopmental pathways,including BMP signaling,as well as spinal cord injury research and testing drug therapies.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.