期刊文献+
共找到58篇文章
< 1 2 3 >
每页显示 20 50 100
A Facial Expression Emotion Recognition Based Human-robot Interaction System 被引量:5
1
作者 Zhentao Liu Min Wu +5 位作者 Weihua Cao Luefeng Chen Jianping Xu Ri Zhang Mengtian Zhou Junwei Mao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期668-676,共9页
A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize huma... A facial expression emotion recognition based human-robot interaction(FEER-HRI) system is proposed, for which a four-layer system framework is designed. The FEERHRI system enables the robots not only to recognize human emotions, but also to generate facial expression for adapting to human emotions. A facial emotion recognition method based on2D-Gabor, uniform local binary pattern(LBP) operator, and multiclass extreme learning machine(ELM) classifier is presented,which is applied to real-time facial expression recognition for robots. Facial expressions of robots are represented by simple cartoon symbols and displayed by a LED screen equipped in the robots, which can be easily understood by human. Four scenarios,i.e., guiding, entertainment, home service and scene simulation are performed in the human-robot interaction experiment, in which smooth communication is realized by facial expression recognition of humans and facial expression generation of robots within 2 seconds. As a few prospective applications, the FEERHRI system can be applied in home service, smart home, safe driving, and so on. 展开更多
关键词 Emotion generation facial expression emotion recognition(FEER) human-robot interaction(hri) system design
下载PDF
Data-Driven Human-Robot Interaction Without Velocity Measurement Using Off-Policy Reinforcement Learning 被引量:3
2
作者 Yongliang Yang Zihao Ding +2 位作者 Rui Wang Hamidreza Modares Donald C.Wunsch 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2022年第1期47-63,共17页
In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design i... In this paper,we present a novel data-driven design method for the human-robot interaction(HRI)system,where a given task is achieved by cooperation between the human and the robot.The presented HRI controller design is a two-level control design approach consisting of a task-oriented performance optimization design and a plant-oriented impedance controller design.The task-oriented design minimizes the human effort and guarantees the perfect task tracking in the outer-loop,while the plant-oriented achieves the desired impedance from the human to the robot manipulator end-effector in the inner-loop.Data-driven reinforcement learning techniques are used for performance optimization in the outer-loop to assign the optimal impedance parameters.In the inner-loop,a velocity-free filter is designed to avoid the requirement of end-effector velocity measurement.On this basis,an adaptive controller is designed to achieve the desired impedance of the robot manipulator in the task space.The simulation and experiment of a robot manipulator are conducted to verify the efficacy of the presented HRI design framework. 展开更多
关键词 Adaptive impedance control data-driven method human-robot interaction(hri) reinforcement learning velocity-free
下载PDF
Understanding Nonverbal Communication Cues of Human Personality Traits in Human-Robot Interaction 被引量:3
3
作者 Zhihao Shen Armagan Elibol Nak Young Chong 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2020年第6期1465-1477,共13页
With the increasing presence of robots in our daily life,there is a strong need and demand for the strategies to acquire a high quality interaction between robots and users by enabling robots to understand users’mood... With the increasing presence of robots in our daily life,there is a strong need and demand for the strategies to acquire a high quality interaction between robots and users by enabling robots to understand users’mood,intention,and other aspects.During human-human interaction,personality traits have an important influence on human behavior,decision,mood,and many others.Therefore,we propose an efficient computational framework to endow the robot with the capability of understanding the user’s personality traits based on the user’s nonverbal communication cues represented by three visual features including the head motion,gaze,and body motion energy,and three vocal features including voice pitch,voice energy,and mel-frequency cepstral coefficient(MFCC).We used the Pepper robot in this study as a communication robot to interact with each participant by asking questions,and meanwhile,the robot extracts the nonverbal features from each participant’s habitual behavior using its on-board sensors.On the other hand,each participant’s personality traits are evaluated with a questionnaire.We then train the ridge regression and linear support vector machine(SVM)classifiers using the nonverbal features and personality trait labels from a questionnaire and evaluate the performance of the classifiers.We have verified the validity of the proposed models that showed promising binary classification performance on recognizing each of the Big Five personality traits of the participants based on individual differences in nonverbal communication cues. 展开更多
关键词 human-robot interaction machine learning nonverbal communication cues personality traits
下载PDF
Interpreting and Extracting Open Knowledge for Human-Robot Interaction 被引量:2
4
作者 Dongcai Lu Xiaoping Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期686-695,共10页
A more natural way for non-expert users to express their tasks in an open-ended set is to use natural language. In this case,a human-centered intelligent agent/robot is required to be able to understand and generate p... A more natural way for non-expert users to express their tasks in an open-ended set is to use natural language. In this case,a human-centered intelligent agent/robot is required to be able to understand and generate plans for these naturally expressed tasks. For this purpose, it is a good way to enhance intelligent robot's abilities by utilizing open knowledge extracted from the web, instead of hand-coded knowledge. A key challenge of utilizing open knowledge lies in the semantic interpretation of the open knowledge organized in multiple modes, which can be unstructured or semi-structured, before one can use it.Previous approaches used a limited lexicon to employ combinatory categorial grammar(CCG) as the underlying formalism for semantic parsing over sentences. Here, we propose a more effective learning method to interpret semi-structured user instructions. Moreover, we present a new heuristic method to recover missing semantic information from the context of an instruction. Experiments showed that the proposed approach renders significant performance improvement compared to the baseline methods and the recovering method is promising. 展开更多
关键词 human-robot interaction intelligent robot natural language processing open knowledge semantic role labeling
下载PDF
Teaching the User By Learning From the User:Personalizing Movement Control in Physical Human-robot Interaction 被引量:1
5
作者 Ali Safavi Mehrdad H.Zadeh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期704-713,共10页
This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior ... This paper proposes a novel approach for physical human-robot interactions(pHRI), where a robot provides guidance forces to a user based on the user performance. This framework tunes the forces in regards to behavior of each user in coping with different tasks, where lower performance results in higher intervention from the robot. This personalized physical human-robot interaction(p2HRI) method incorporates adaptive modeling of the interaction between the human and the robot as well as learning from demonstration(LfD) techniques to adapt to the users' performance. This approach is based on model predictive control where the system optimizes the rendered forces by predicting the performance of the user. Moreover, continuous learning of the user behavior is added so that the models and personalized considerations are updated based on the change of user performance over time. Applying this framework to a field such as haptic guidance for skill improvement, allows a more personalized learning experience where the interaction between the robot as the intelligent tutor and the student as the user,is better adjusted based on the skill level of the individual and their gradual improvement. The results suggest that the precision of the model of the interaction is improved using this proposed method,and the addition of the considered personalized factors to a more adaptive strategy for rendering of guidance forces. 展开更多
关键词 Haptic guidance learning from demonstration(LfD) personalized physical human-robot interaction(p2hri) user performance
下载PDF
Information perception and feedback mechanism and key techniques of multi-modality human-robot interaction for service robots 被引量:1
6
作者 赵其杰 《Journal of Shanghai University(English Edition)》 CAS 2006年第3期281-281,共1页
With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much att... With the increasing of the elderly population and the growing hearth care cost, the role of service robots in aiding the disabled and the elderly is becoming important. Many researchers in the world have paid much attention to heaRthcare robots and rehabilitation robots. To get natural and harmonious communication between the user and a service robot, the information perception/feedback ability, and interaction ability for service robots become more important in many key issues. 展开更多
关键词 service robot MULTI-MODALITY human-robot interaction user model interaction protocol information perception and feedback.
下载PDF
Augmented Virtual Stiffness Rendering of a Cable-driven SEA for Human-Robot Interaction 被引量:2
7
作者 Ningbo Yu Wulin Zou +1 位作者 Wen Tan Zhuo Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第4期714-723,共10页
Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and fur... Human-robot interaction(HRI) is fundamental for human-centered robotics, and has been attracting intensive research for more than a decade. The series elastic actuator(SEA) provides inherent compliance, safety and further benefits for HRI, but the introduced elastic element also brings control difficulties. In this paper, we address the stiffness rendering problem for a cable-driven SEA system, to achieve either low stiffness for good transparency or high stiffness bigger than the physical spring constant, and to assess the rendering accuracy with quantified metrics. By taking a velocity-sourced model of the motor, a cascaded velocity-torque-impedance control structure is established. To achieve high fidelity torque control, the 2-DOF(degree of freedom) stabilizing control method together with a compensator has been used to handle the competing requirements on tracking performance, noise and disturbance rejection,and energy optimization in the cable-driven SEA system. The conventional passivity requirement for HRI usually leads to a conservative design of the impedance controller, and the rendered stiffness cannot go higher than the physical spring constant. By adding a phase-lead compensator into the impedance controller,the stiffness rendering capability was augmented with guaranteed relaxed passivity. Extensive simulations and experiments have been performed, and the virtual stiffness has been rendered in the extended range of 0.1 to 2.0 times of the physical spring constant with guaranteed relaxed passivity for physical humanrobot interaction below 5 Hz. Quantified metrics also verified good rendering accuracy. 展开更多
关键词 Cable actuation impedance control physical human-robot interaction relaxed passivity series elastic actuator stabilizing 2-DOF(degree of freedom) controllers
下载PDF
Humanoid robot heads for human-robot interaction:A review
8
作者 LI Yi ZHU LiXiang +4 位作者 ZHANG ZiQian GUO MingFei LI ZhiXin LI YanBiao HASHIMOTO Minoru 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2024年第2期357-379,共23页
The humanoid robot head plays an important role in the emotional expression of human-robot interaction(HRI).They are emerging in industrial manufacturing,business reception,entertainment,teaching assistance,and tour g... The humanoid robot head plays an important role in the emotional expression of human-robot interaction(HRI).They are emerging in industrial manufacturing,business reception,entertainment,teaching assistance,and tour guides.In recent years,significant progress has been made in the field of humanoid robots.Nevertheless,there is still a lack of humanoid robots that can interact with humans naturally and comfortably.This review comprises a comprehensive survey of state-of-the-art technologies for humanoid robot heads over the last three decades,which covers the aspects of mechanical structures,actuators and sensors,anthropomorphic behavior control,emotional expression,and human-robot interaction.Finally,the current challenges and possible future directions are discussed. 展开更多
关键词 humanoid robot head anthropomorphic behaviors emotional expression human-robot interaction
原文传递
Digital Twin for Human-Robot Interactive Welding and Welder Behavior Analysis 被引量:10
9
作者 Qiyue Wang Wenhua Jiao +1 位作者 Peng Wang YuMing Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2021年第2期334-343,共10页
This paper presents an innovative investigation on prototyping a digital twin(DT)as the platform for human-robot interactive welding and welder behavior analysis.This humanrobot interaction(HRI)working style helps to ... This paper presents an innovative investigation on prototyping a digital twin(DT)as the platform for human-robot interactive welding and welder behavior analysis.This humanrobot interaction(HRI)working style helps to enhance human users'operational productivity and comfort;while data-driven welder behavior analysis benefits to further novice welder training.This HRI system includes three modules:1)a human user who demonstrates the welding operations offsite with her/his operations recorded by the motion-tracked handles;2)a robot that executes the demonstrated welding operations to complete the physical welding tasks onsite;3)a DT system that is developed based on virtual reality(VR)as a digital replica of the physical human-robot interactive welding environment.The DT system bridges a human user and robot through a bi-directional information flow:a)transmitting demonstrated welding operations in VR to the robot in the physical environment;b)displaying the physical welding scenes to human users in VR.Compared to existing DT systems reported in the literatures,the developed one provides better capability in engaging human users in interacting with welding scenes,through an augmented VR.To verify the effectiveness,six welders,skilled with certain manual welding training and unskilled without any training,tested the system by completing the same welding job;three skilled welders produce satisfied welded workpieces,while the other three unskilled do not.A data-driven approach as a combination of fast Fourier transform(FFT),principal component analysis(PCA),and support vector machine(SVM)is developed to analyze their behaviors.Given an operation sequence,i.e.,motion speed sequence of the welding torch,frequency features are firstly extracted by FFT and then reduced in dimension through PCA,which are finally routed into SVM for classification.The trained model demonstrates a 94.44%classification accuracy in the testing dataset.The successful pattern recognition in skilled welder operations should benefit to accelerate novice welder training. 展开更多
关键词 Digital twin(DT) human-robot interaction(hri) machine learning virtual reality(VR) welder behavior analysis
下载PDF
Behavior of Delivery Robot in Human-Robot Collaborative Spaces During Navigation
10
作者 Kiran Jot Singh Divneet Singh Kapoor +3 位作者 Mohamed Abouhawwash Jehad F.Al-Amri Shubham Mahajan Amit Kant Pandit 《Intelligent Automation & Soft Computing》 SCIE 2023年第1期795-810,共16页
Navigation is an essential skill for robots.It becomes a cumbersome task for the robot in a human-populated environment,and Industry 5.0 is an emerging trend that focuses on the interaction between humans and robots.R... Navigation is an essential skill for robots.It becomes a cumbersome task for the robot in a human-populated environment,and Industry 5.0 is an emerging trend that focuses on the interaction between humans and robots.Robot behavior in a social setting is the key to human acceptance while ensuring human comfort and safety.With the advancement in robotics technology,the true use cases of robots in the tourism and hospitality industry are expanding in number.There are very few experimental studies focusing on how people perceive the navigation behavior of a delivery robot.A robotic platform named“PI”has been designed,which incorporates proximity and vision sensors.The robot utilizes a real-time object recognition algorithm based on the You Only Look Once(YOLO)algorithm to detect objects and humans during navigation.This study is aimed towards evaluating human experience,for which we conducted a study among 36 participants to explore the perceived social presence,role,and perception of a delivery robot exhibiting different behavior conditions while navigating in a hotel corridor.The participants’responses were collected and compared for different behavior conditions demonstrated by the robot and results show that humans prefer an assistant role of a robot enabled with audio and visual aids exhibiting social behavior.Further,this study can be useful for developers to gain insight into the expected behavior of a delivery robot. 展开更多
关键词 human-robot interaction robot navigation robot behavior collaborative spaces industrial IoT industry 5.0
下载PDF
Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects
11
作者 Yuchuang Tong Haotian Liu Zhengtao Zhang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第2期301-328,共28页
This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analy... This paper provides a comprehensive review of the current status, advancements, and future prospects of humanoid robots, highlighting their significance in driving the evolution of next-generation industries. By analyzing various research endeavors and key technologies, encompassing ontology structure,control and decision-making, and perception and interaction, a holistic overview of the current state of humanoid robot research is presented. Furthermore, emerging challenges in the field are identified, emphasizing the necessity for a deeper understanding of biological motion mechanisms, improved structural design,enhanced material applications, advanced drive and control methods, and efficient energy utilization. The integration of bionics, brain-inspired intelligence, mechanics, and control is underscored as a promising direction for the development of advanced humanoid robotic systems. This paper serves as an invaluable resource, offering insightful guidance to researchers in the field,while contributing to the ongoing evolution and potential of humanoid robots across diverse domains. 展开更多
关键词 Future trends and challenges humanoid robots human-robot interaction key technologies potential applications
下载PDF
Personalized assessment and training of neurosurgical skills in virtual reality:An interpretable machine learning approach
12
作者 Fei LI Zhibao QIN +3 位作者 Kai QIAN Shaojun LIANG Chengli LI Yonghang TAI 《虚拟现实与智能硬件(中英文)》 EI 2024年第1期17-29,共13页
Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and eva... Background Virtual reality technology has been widely used in surgical simulators,providing new opportunities for assessing and training surgical skills.Machine learning algorithms are commonly used to analyze and evaluate the performance of participants.However,their interpretability limits the personalization of the training for individual participants.Methods Seventy-nine participants were recruited and divided into three groups based on their skill level in intracranial tumor resection.Data on the use of surgical tools were collected using a surgical simulator.Feature selection was performed using the Minimum Redundancy Maximum Relevance and SVM-RFE algorithms to obtain the final metrics for training the machine learning model.Five machine learning algorithms were trained to predict the skill level,and the support vector machine performed the best,with an accuracy of 92.41%and Area Under Curve value of 0.98253.The machine learning model was interpreted using Shapley values to identify the important factors contributing to the skill level of each participant.Results This study demonstrates the effectiveness of machine learning in differentiating the evaluation and training of virtual reality neurosurgical performances.The use of Shapley values enables targeted training by identifying deficiencies in individual skills.Conclusions This study provides insights into the use of machine learning for personalized training in virtual reality neurosurgery.The interpretability of the machine learning models enables the development of individualized training programs.In addition,this study highlighted the potential of explanatory models in training external skills. 展开更多
关键词 Machine learning NEUROSURGERY Shapley values Virtual reality human-robot interaction
下载PDF
Large language models for human–robot interaction:A review 被引量:5
13
作者 Ceng Zhang Junxin Chen +2 位作者 Jiatong Li Yanhong Peng Zebing Mao 《Biomimetic Intelligence & Robotics》 EI 2023年第4期1-15,共15页
The fusion of large language models and robotic systems has introduced a transformative paradigm in human–robot interaction,offering unparalleled capabilities in natural language understanding and task execution.This... The fusion of large language models and robotic systems has introduced a transformative paradigm in human–robot interaction,offering unparalleled capabilities in natural language understanding and task execution.This review paper offers a comprehensive analysis of this nascent but rapidly evolving domain,spotlighting the recent advances of Large Language Models(LLMs)in enhancing their structures and performances,particularly in terms of multimodal input handling,high-level reasoning,and plan generation.Moreover,it probes the current methodologies that integrate LLMs into robotic systems for complex task completion,from traditional probabilistic models to the utilization of value functions and metrics for optimal decision-making.Despite these advancements,the paper also reveals the formidable challenges that confront the field,such as contextual understanding,data privacy and ethical considerations.To our best knowledge,this is the first study to comprehensively analyze the advances and considerations of LLMs in Human–Robot Interaction(HRI)based on recent progress,which provides potential avenues for further research. 展开更多
关键词 Large language models human-robot interaction Task completion Considerations and challenges
原文传递
Novel AR-based interface for human-robot interaction and visualization 被引量:7
14
作者 H.C.Fang S.K.Ong A.Y.C.Nee 《Advances in Manufacturing》 SCIE CAS 2014年第4期275-288,共14页
Intuitive and efficient interfaces for human- robot interaction (HRI) have been a challenging issue in robotics as it is essential for the prevalence of robots supporting humans in key areas of activities. This pape... Intuitive and efficient interfaces for human- robot interaction (HRI) have been a challenging issue in robotics as it is essential for the prevalence of robots supporting humans in key areas of activities. This paper presents a novel augmented reality (AR) based interface to facilitate human-virtual robot interaction. A number of human-virtual robot interaction methods have been for- mulated and implemented with respect to the various types of operations needed in different robotic applications. A Euclidean distance-based method is developed to assist the users in the interaction with the virtual robot and the spatial entities in an AR environment. A monitor-based visualization mode is adopted as it enables the users to perceive the virtual contents associated with different interaction methods, and the virtual content augmented in the real environment is informative and useful to the users during their interaction with the virtual robot. Case researches are presented to demonstrate the successful implementation of the AR-based HRI interface in planning robot pick-and-place operations and path following operations. 展开更多
关键词 human-robot interaction (hri human-robot interface Augmented reality (AR)
原文传递
Model reference adaptive impedance control for physical human-robot interaction 被引量:3
15
作者 Bakur ALQAUDI Hamidreza MODARES +3 位作者 Isura RANATUNGA Shaikh M. TOUSIF Frank L. LEWIS Dan O. POPA 《Control Theory and Technology》 EI CSCD 2016年第1期68-82,共15页
This paper presents a novel enhanced human-robot interaction system based on model reference adaptive control. The presented method delivers guaranteed stability and task performance and has two control loops. A robot... This paper presents a novel enhanced human-robot interaction system based on model reference adaptive control. The presented method delivers guaranteed stability and task performance and has two control loops. A robot-specific inner loop, which is a neuroadaptive controller, learns the robot dynamics online and makes the robot respond like a prescribed impedance model. This loop uses no task information, including no prescribed trajectory. A task-specific outer loop takes into account the human operator dynamics and adapts the prescribed robot impedance model so that the combined human-robot system has desirable characteristics for task performance. This design is based on model reference adaptive control, but of a nonstandard form. The net result is a controller with both adaptive impedance characteristics and assistive inputs that augment the human operator to provide improved task performance of the human-robot team. Simulations verify the performance of the proposed controller in a repetitive point-to-point motion task. Actual experimental implementations on a PR2 robot further corroborate the effectiveness of the approach. 展开更多
关键词 human-robot interaction model reference adaptive control model reference neuroadaptive impedance control
原文传递
Human-robot object handover:Recent progress and future direction
16
作者 Haonan Duan Yifan Yang +1 位作者 Daheng Li Peng Wang 《Biomimetic Intelligence & Robotics》 EI 2024年第1期1-13,共13页
Human-robot object handover is one of the most primitive and crucial capabilities in human-robot collaboration.It is of great significance to promote robots to truly enter human production and life scenarios and serve... Human-robot object handover is one of the most primitive and crucial capabilities in human-robot collaboration.It is of great significance to promote robots to truly enter human production and life scenarios and serve human in numerous tasks.Remarkable progressions in the field of human-robot object handover have been made by researchers.This article reviews the recent literature on human-robot object handover.To this end,we summarize the results from multiple dimensions,from the role played by the robot(receiver or giver),to the end-effector of the robot(parallel-jaw gripper or multi-finger hand),to the robot abilities(grasp strategy or motion planning).We also implement a human-robot object handover system for anthropomorphic hand to verify human-robot object handover pipeline.This review aims to provide researchers and developers with a guideline for designing human-robot object handover methods. 展开更多
关键词 human-robot interactions Object handover
原文传递
Assessment of Cognitive skills via Human-robot Interaction and Cloud Computing
17
作者 Alessandro Di Nuovo Simone Varrasi +3 位作者 Alexandr Lucas Daniela Conti John McNamara Alessandro Soranzo 《Journal of Bionic Engineering》 SCIE EI CSCD 2019年第3期526-539,共14页
Technological advances are increasing the range of applications for artificial intelligence, especially through its embodiment within humanoid robotics platforms. This promotes the development of novel systems for aut... Technological advances are increasing the range of applications for artificial intelligence, especially through its embodiment within humanoid robotics platforms. This promotes the development of novel systems for automated screening of neurological conditions to assist the clinical practitioners in the detection of early signs of mild cognitive impairments. This article presents the implementation and the experimental validation of the first robotic system for cognitive assessment, based on one of the most popular platforms for social robotics, Softbank "Pepper", which administers and records a set of multi-modal interactive tasks to engage the user cognitive abilities. The robot intelligence is programmed using the state-of-the-art IBM Watson AI Cloud services, which provide the necessary capabilities for improving the social interaction and scoring the tests. The system has been tested by healthy adults (N= 35) and we found a significant correlation between the automated scoring and one of the most widely used Paper-and-Pencil tests. We conclude that the system can be considered as a screening instrument for cognitive assessment. 展开更多
关键词 socially assistive ROBOTICS BRIEF COGNITIVE testing human-robot interaction NEUROLOGICAL SCREENING cloud computing
原文传递
人机交互中的个性化情感模型 被引量:9
18
作者 王巍 王志良 +1 位作者 郑思仪 谷学静 《智能系统学报》 2010年第1期10-16,共7页
人与机器人的交互过程中,情感因素的引入能够使人机交流更加自然和谐.因此,完整的人工情感模型的建立是首要解决的问题.基于情感能量理论基础,首先,提出了心境自发转移和刺激转移模型.其次,结合情绪自发转移的马尔可夫链模型和刺激转移... 人与机器人的交互过程中,情感因素的引入能够使人机交流更加自然和谐.因此,完整的人工情感模型的建立是首要解决的问题.基于情感能量理论基础,首先,提出了心境自发转移和刺激转移模型.其次,结合情绪自发转移的马尔可夫链模型和刺激转移的HMM模型,将心境和情绪的自发和刺激转移过程统一在一个框架下.最后,将完整的人工情感模型软件化并应用于儿童玩伴机器人上,在接受非结构化环境与用户的信息输入后,个性化的情感软件模块产生输出,实现针对儿童用户的玩伴机器人个性化交互,通过应用验证了该模型的有效性. 展开更多
关键词 情感计算 人工心理 心境 人机交互 个性化交互
下载PDF
可变形灾难救援机器人控制站系统的设计与实现 被引量:16
19
作者 王楠 吴成东 +1 位作者 王明辉 李斌 《机器人》 EI CSCD 北大核心 2011年第2期202-207,共6页
针对灾难救援应用领域具体需求,提出了控制站系统的设计原则.基于人机交互技术,设计了可变形灾难救援机器人控制站系统,该系统具有感知信息完整、操控灵活、界面友好、交互性强等特点.通过灾难救援模拟环境进行实验,验证了该控制站系统... 针对灾难救援应用领域具体需求,提出了控制站系统的设计原则.基于人机交互技术,设计了可变形灾难救援机器人控制站系统,该系统具有感知信息完整、操控灵活、界面友好、交互性强等特点.通过灾难救援模拟环境进行实验,验证了该控制站系统可以实现机器人在复杂环境中的运动控制、多通道信息交互等功能,在灾难救援等领域具有可行性及有效性. 展开更多
关键词 灾难救援 人机交互 可变形机器人 控制站 环境适应
下载PDF
基于语音识别的脑瘫康复数字训练系统设计 被引量:6
20
作者 卢振利 王红 +7 位作者 马志鹏 沈玄霖 Marko Pencic 刘燕 单长考 葛龙 李斌 Marjan Mernik 《高技术通讯》 EI CAS 北大核心 2020年第5期526-532,共7页
基于语音识别设计了针对脑瘫患儿的数字语音训练系统。应用人机交互(HRI)技术与仿生机械手动作控制相结合达到提升脑瘫(CP)康复训练效果的目的。该系统中控制器采用Arduino MEGA 2560为主控制器,显示屏LCD1602作为人机交互数据显示界面... 基于语音识别设计了针对脑瘫患儿的数字语音训练系统。应用人机交互(HRI)技术与仿生机械手动作控制相结合达到提升脑瘫(CP)康复训练效果的目的。该系统中控制器采用Arduino MEGA 2560为主控制器,显示屏LCD1602作为人机交互数据显示界面,通过LD3320语音芯片实现人机语音交互功能。人机交互功能是通过Labview环境展开,可实现人、机器人的手势与动作的实时交互训练与评价。该系统可训练脑瘫患者反应能力、语言表述能力以及认识手势动作数字动作能力,为提升脑瘫康复训练系统提供关键技术。 展开更多
关键词 语音识别 机器人辅助系统 人机交互(hri) 脑瘫(CP)康复训练
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部