Motion control of the human hand is the most complex part of the human body.It has always been a challenge for a good balance between the cost,weight,responding speed,grasping force,finger extension,and dexterity of p...Motion control of the human hand is the most complex part of the human body.It has always been a challenge for a good balance between the cost,weight,responding speed,grasping force,finger extension,and dexterity of prosthetic hand.To solve these issues,a 3D-printed cable driven humanoid hand based on bidirectional elastomeric passive transmission(BEPT)is designed in this paper.A semi-static model of BEPT is investigated based on energy conservation law to analyze the mechanical properties of BEPT and a dynamical simulation of finger grasping is conducted.For a good imitation of human hand and an excellent grasping performance,specific BEPT is selected according to human finger grasping experiments.The advantage of BEPT based humanoid hand is that a good balance between the price and performance of the humanoid hand is achieved.Experiments proved that the designed prosthetic hand’s single fingertip force can reach 33 N and the fastest fingertip grasping speed realized 0.6 s/180°.It also has a good force compliance effect with only 430g’s weight.It can not only grab fragile objects like raw eggs and paper cup,but also achieve strong grasping force to damage metal cans.This humanoid hand has considerable application prospects in artificial prosthesis,human-computer interaction,and robot operation.展开更多
Teleoperation can assist people to complete various complex tasks in inaccessible or high-risk environments,in which a wearable hand exoskeleton is one of the key devices.Adequate adaptability would be available to en...Teleoperation can assist people to complete various complex tasks in inaccessible or high-risk environments,in which a wearable hand exoskeleton is one of the key devices.Adequate adaptability would be available to enable the master hand exoskeleton to capture the motion of human fingers and reproduce the contact force between the slave hand and its object.This paper presents a novel finger exoskeleton based on the cascading four-link closed-loop kinematic chain.Each finger has an independent closed-loop kinematic chain,and the angle sensors are used to obtain the finger motion including the flexion/extension and the adduction/abduction.The cable tension is changed by the servo motor to transmit the contact force to the fingers in real time.Based on the finger exoskeleton,an adaptive hand exoskeleton is consequently developed.In addition,the hand exoskeleton is tested in a master-slave system.The experiment results show that the adaptive hand exoskeleton can be worn without any mechanical constraints,and the slave hand can follow the motions of each human finger.The accuracy and the real-time capability of the force reproduction are validated.The proposed adaptive hand exoskeleton can be employed as the master hand to remotely control the humanoid five-fingered dexterous slave hand,thus,enabling the teleoperation system to complete complex dexterous manipulation tasks.展开更多
When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into acc...When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into account to fully accomplish the actuation tasks.This paper presents a novel humanoid robotic myocontrol hand (AR hand Ⅲ) which adopted an underac- tuated mechanism and a forearm myocontrol EMG method.The AR hand Ⅲ has five fingers and 15 joints,and actuated by three embedded motors.Underactuation can be found within each finger and between the rest three fingers (the middle finger,the ring finger and the little finger) when the hand is grasping objects.For the EMG control,two specific methods are proposed:the three-fingered hand gesture configuration of the AR hand Ⅲ and a pattern classification method of EMG signals based on a statistical learning algorithm-Support Vector Machine (SVM).Eighteen active hand gestures of a testee are recognized ef- fectively,which can be directly mapped into the motions of AR hand Ⅲ.An on-line EMG control scheme is established based on two different decision functions:one is for the discrimination between the idle and active modes,the other is for the recog- nition of the active modes.As a result,the AR hand Ⅲ can swiftly follow the gesture instructions of the testee with a time delay less than 100 ms.展开更多
Many studies have examined the design,fabrication and characteristics of gecko-inspired adhesives,but applied research on gecko-inspired surfaces in humanoid dexterous hands is relatively scarce.Here,a wedged slanted ...Many studies have examined the design,fabrication and characteristics of gecko-inspired adhesives,but applied research on gecko-inspired surfaces in humanoid dexterous hands is relatively scarce.Here,a wedged slanted structure with a curved substrate suitable for humanoid dexterous fingers was designed and manufactured via ultraprecision machining and replica molding.The adhesion and friction properties of the wedged slanted structure show obvious anisotropic characteristics in the gripping and releasing directions,and the influence of structural parameters and motion parameters on the adhesion and friction was systematically studied.The humanoid dexterous fingers with gecko-inspired surfaces greatly increased the grasping force limit(increase to 4.02 times)based on the grasping of measuring cups with different volumes of water and improved the grasping stability based on the picking up of smooth steel balls of different diameters.This study shows that this process,based on ultraprecision machining and replica molding,is a green,high-efficiency,and low-cost method to fabricate large-area biomimetic surfaces that has potential applications in dexterous humanoid hands to improve grasping ability,stability and adaptability.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.91948301)Hubei Provincial Technology Innovation Project of China(Grant No.2019AAA071)Open Fund of State Key Laboratory of Robotics and System(Grant No.SKLRS-2019-KF-11).
文摘Motion control of the human hand is the most complex part of the human body.It has always been a challenge for a good balance between the cost,weight,responding speed,grasping force,finger extension,and dexterity of prosthetic hand.To solve these issues,a 3D-printed cable driven humanoid hand based on bidirectional elastomeric passive transmission(BEPT)is designed in this paper.A semi-static model of BEPT is investigated based on energy conservation law to analyze the mechanical properties of BEPT and a dynamical simulation of finger grasping is conducted.For a good imitation of human hand and an excellent grasping performance,specific BEPT is selected according to human finger grasping experiments.The advantage of BEPT based humanoid hand is that a good balance between the price and performance of the humanoid hand is achieved.Experiments proved that the designed prosthetic hand’s single fingertip force can reach 33 N and the fastest fingertip grasping speed realized 0.6 s/180°.It also has a good force compliance effect with only 430g’s weight.It can not only grab fragile objects like raw eggs and paper cup,but also achieve strong grasping force to damage metal cans.This humanoid hand has considerable application prospects in artificial prosthesis,human-computer interaction,and robot operation.
基金Supported by National Key Research and Development Program of China(Grant No.2018YFE0125600)Zhejiang Provincial Key Research,Develop-ment Program(Grant No.2021C04015)Natural Science Foundation of Zhejiang(Grant No.LZ23E050005).
文摘Teleoperation can assist people to complete various complex tasks in inaccessible or high-risk environments,in which a wearable hand exoskeleton is one of the key devices.Adequate adaptability would be available to enable the master hand exoskeleton to capture the motion of human fingers and reproduce the contact force between the slave hand and its object.This paper presents a novel finger exoskeleton based on the cascading four-link closed-loop kinematic chain.Each finger has an independent closed-loop kinematic chain,and the angle sensors are used to obtain the finger motion including the flexion/extension and the adduction/abduction.The cable tension is changed by the servo motor to transmit the contact force to the fingers in real time.Based on the finger exoskeleton,an adaptive hand exoskeleton is consequently developed.In addition,the hand exoskeleton is tested in a master-slave system.The experiment results show that the adaptive hand exoskeleton can be worn without any mechanical constraints,and the slave hand can follow the motions of each human finger.The accuracy and the real-time capability of the force reproduction are validated.The proposed adaptive hand exoskeleton can be employed as the master hand to remotely control the humanoid five-fingered dexterous slave hand,thus,enabling the teleoperation system to complete complex dexterous manipulation tasks.
基金supported by the National Natural Science Foundation (Grant No. 50435040 and 60675045)the National High Technology Research and Development Program (Grant No. 2006AA04Z228)the "111 Project" of China (No. B07018).
文摘When developing a humanoid myo-control hand,not only the mechanical structure should be considered to afford a high dexterity,but also the myoelectric (electromyography,EMG) control capability should be taken into account to fully accomplish the actuation tasks.This paper presents a novel humanoid robotic myocontrol hand (AR hand Ⅲ) which adopted an underac- tuated mechanism and a forearm myocontrol EMG method.The AR hand Ⅲ has five fingers and 15 joints,and actuated by three embedded motors.Underactuation can be found within each finger and between the rest three fingers (the middle finger,the ring finger and the little finger) when the hand is grasping objects.For the EMG control,two specific methods are proposed:the three-fingered hand gesture configuration of the AR hand Ⅲ and a pattern classification method of EMG signals based on a statistical learning algorithm-Support Vector Machine (SVM).Eighteen active hand gestures of a testee are recognized ef- fectively,which can be directly mapped into the motions of AR hand Ⅲ.An on-line EMG control scheme is established based on two different decision functions:one is for the discrimination between the idle and active modes,the other is for the recog- nition of the active modes.As a result,the AR hand Ⅲ can swiftly follow the gesture instructions of the testee with a time delay less than 100 ms.
基金supported by the National Key Research and Development Program of China(Grant No.2018YFB1305300)the National Natural Science Foundation of China(Grant Nos.61733001,61873039,U1713215,U1913211,and U2013602)the China Postdoctoral Science Foundation(Grant No.2021M690017)。
文摘Many studies have examined the design,fabrication and characteristics of gecko-inspired adhesives,but applied research on gecko-inspired surfaces in humanoid dexterous hands is relatively scarce.Here,a wedged slanted structure with a curved substrate suitable for humanoid dexterous fingers was designed and manufactured via ultraprecision machining and replica molding.The adhesion and friction properties of the wedged slanted structure show obvious anisotropic characteristics in the gripping and releasing directions,and the influence of structural parameters and motion parameters on the adhesion and friction was systematically studied.The humanoid dexterous fingers with gecko-inspired surfaces greatly increased the grasping force limit(increase to 4.02 times)based on the grasping of measuring cups with different volumes of water and improved the grasping stability based on the picking up of smooth steel balls of different diameters.This study shows that this process,based on ultraprecision machining and replica molding,is a green,high-efficiency,and low-cost method to fabricate large-area biomimetic surfaces that has potential applications in dexterous humanoid hands to improve grasping ability,stability and adaptability.