A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) comp...A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) composite coated tapered no-core fiber(NCF) combined with a fiber Bragg grating(FBG). FBG is insensitive to humidity and sensitive to temperature, which is used to compensate temperature of the sensor. Experimental results show this sensor has humidity sensitivity of 143.27 pm/%RH ranging from 30%RH to 80%RH and the temperature sensitivity of 9.21 pm/℃. The proposed sensor has advantages of simple structure, good repeatability, and good stability, which is expected to be used in both RH and temperature measurement in biological and chemical fields.展开更多
The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 ...The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 temperature sounding channels around the 60 GHz oxygen absorption band and the MWHTS has 8 temperature sounding channels around the 118.75 GHz oxygen absorption line. The data quality of the observed brightness temperatures can be evaluated using atmospheric temperature retrievals from the MWTS-Ⅱ and MWHTS observations. Here, the bias characteristics and corrections of the observed brightness temperatures are described. The information contents of observations are calculated, and the retrieved atmospheric temperature profiles are compared using a neural network(NN) retrieval algorithm and a one-dimensional variational inversion(1 D-var) retrieval algorithm. The retrieval results from the NN algorithm show that the accuracy of the MWTS-Ⅱ retrieval is higher than that of the MWHTS retrieval, which is consistent with the results of the radiometric information analysis. The retrieval results from the 1 D-var algorithm show that the accuracy of MWTS-Ⅱ retrieval is similar to that of the MWHTS retrieval at the levels from 850-1,000 h Pa, is lower than that of the MWHTS retrieval at the levels from 650-850 h Pa and 125-300 h Pa, and is higher than that of MWHTS at the other levels. A comparison of the retrieved atmospheric temperature using these satellite observations provides a reference value for assessing the accuracy of atmospheric temperature detection at the 60 GHz oxygen band and 118.75 GHz oxygen line. In addition, based on the comparison of the retrieval results, an optimized combination method is proposed using a branch and bound algorithm for the NN retrieval algorithm, which combines the observations from both the MWTS-Ⅱand MWHTS instruments to retrieve the atmospheric temperature profiles. The results show that the optimal combination can further improve the accuracy of MWTS-Ⅱ retrieval and enhance the detection accuracy of atmospheric temperatures near the surface.展开更多
The 89 and 150 GHz channels operated in window are sensitive to precipitation and humidity. The 183 GHz humidity-sensitive channels and 118 GHz temperature-sensitive channels of the Microwave Humidity and Temperature ...The 89 and 150 GHz channels operated in window are sensitive to precipitation and humidity. The 183 GHz humidity-sensitive channels and 118 GHz temperature-sensitive channels of the Microwave Humidity and Temperature Sounder (MWHTS) on the Chinese Feng Yun 3C MWHTS (FY-3C MWHTS) polar-orbit meteorological satellite responds in part to precipitation. Combining 118 and 183 GHz channels, the paper develops a passive sub-millimeter atmospheric profile and precipitation retrievals algorithm for MWHTS onboard the FY-3C (Feng Yun-3C) satellite. The retrieval algorithm employs a number of back propagation neural network estimators trained and evaluated using the validated global reference physical model NCEP/WRF/ARTS and works for land and seawater with latitude between -40 to 40 degree. NCEP data per 6 hours were downloaded to run the Weather Research and Forecast model WRF, and to derive the typical precipitation data for the whole world. The Atmospheric Radiative Transfer Simulator ARTS is feasible for performing simulations of atmospheric radiative transfer. The results show that the profile retrievals using BP-NN algorithm has the best correlation with those from radiosonde, which is less than 18% and 1 K of root mean square error, respectively. For precipitation rate retrievals, a much better agreement is reached with rain gauge and ECMWF datasets, the RMS is between 0.80 to 30.24 mm/h for sea surface and 0.789 to 33.11 mm/h for land surface according to the classification by precipitation type. Also, the analysis of retrievals located in Tibetan plateau is provided as an example to justify the robustness and performance of retrieving model.展开更多
In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (8...In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (85℃) were performed on silicone/YAG phosphor composites. The luminescence properties of silicone/phosphor composites are monitored by a fluorescence spectrometer. The results show that high temperature could result in an increase in conversion efficiency of composites during the early aging stage and red shift of YAG phosphor; and high humidity could result in a significant decrease in conversion efficiency of composites while having a small influence upon the optimal excitation wavelength of the YAG phosphor.展开更多
基金supported by the National Natural Science Foundation of China (No.61377075)the Training Program for Leading Talents of Universities in Tianjin。
文摘A simple structure optical fiber sensor for relative humidity(RH) and temperature measurement is proposed and verified in this paper, which is based on graphene oxide quantum dots and polyvinyl alcohol(GOQDs-PVA) composite coated tapered no-core fiber(NCF) combined with a fiber Bragg grating(FBG). FBG is insensitive to humidity and sensitive to temperature, which is used to compensate temperature of the sensor. Experimental results show this sensor has humidity sensitivity of 143.27 pm/%RH ranging from 30%RH to 80%RH and the temperature sensitivity of 9.21 pm/℃. The proposed sensor has advantages of simple structure, good repeatability, and good stability, which is expected to be used in both RH and temperature measurement in biological and chemical fields.
基金Key Fostering Project of the National Space Science Center,Chinese Academy of Sciences(Y62112f37s)National 863 Project of China(2015AA8126027)
文摘The Microwave Temperature Sounder-Ⅱ(MWTS-Ⅱ) and Microwave Humidity and Temperature Sounder(MWHTS) onboard the Fengyun-3 C(FY-3 C) satellite can be used to detect atmospheric temperature profiles. The MWTS-II has 13 temperature sounding channels around the 60 GHz oxygen absorption band and the MWHTS has 8 temperature sounding channels around the 118.75 GHz oxygen absorption line. The data quality of the observed brightness temperatures can be evaluated using atmospheric temperature retrievals from the MWTS-Ⅱ and MWHTS observations. Here, the bias characteristics and corrections of the observed brightness temperatures are described. The information contents of observations are calculated, and the retrieved atmospheric temperature profiles are compared using a neural network(NN) retrieval algorithm and a one-dimensional variational inversion(1 D-var) retrieval algorithm. The retrieval results from the NN algorithm show that the accuracy of the MWTS-Ⅱ retrieval is higher than that of the MWHTS retrieval, which is consistent with the results of the radiometric information analysis. The retrieval results from the 1 D-var algorithm show that the accuracy of MWTS-Ⅱ retrieval is similar to that of the MWHTS retrieval at the levels from 850-1,000 h Pa, is lower than that of the MWHTS retrieval at the levels from 650-850 h Pa and 125-300 h Pa, and is higher than that of MWHTS at the other levels. A comparison of the retrieved atmospheric temperature using these satellite observations provides a reference value for assessing the accuracy of atmospheric temperature detection at the 60 GHz oxygen band and 118.75 GHz oxygen line. In addition, based on the comparison of the retrieval results, an optimized combination method is proposed using a branch and bound algorithm for the NN retrieval algorithm, which combines the observations from both the MWTS-Ⅱand MWHTS instruments to retrieve the atmospheric temperature profiles. The results show that the optimal combination can further improve the accuracy of MWTS-Ⅱ retrieval and enhance the detection accuracy of atmospheric temperatures near the surface.
文摘The 89 and 150 GHz channels operated in window are sensitive to precipitation and humidity. The 183 GHz humidity-sensitive channels and 118 GHz temperature-sensitive channels of the Microwave Humidity and Temperature Sounder (MWHTS) on the Chinese Feng Yun 3C MWHTS (FY-3C MWHTS) polar-orbit meteorological satellite responds in part to precipitation. Combining 118 and 183 GHz channels, the paper develops a passive sub-millimeter atmospheric profile and precipitation retrievals algorithm for MWHTS onboard the FY-3C (Feng Yun-3C) satellite. The retrieval algorithm employs a number of back propagation neural network estimators trained and evaluated using the validated global reference physical model NCEP/WRF/ARTS and works for land and seawater with latitude between -40 to 40 degree. NCEP data per 6 hours were downloaded to run the Weather Research and Forecast model WRF, and to derive the typical precipitation data for the whole world. The Atmospheric Radiative Transfer Simulator ARTS is feasible for performing simulations of atmospheric radiative transfer. The results show that the profile retrievals using BP-NN algorithm has the best correlation with those from radiosonde, which is less than 18% and 1 K of root mean square error, respectively. For precipitation rate retrievals, a much better agreement is reached with rain gauge and ECMWF datasets, the RMS is between 0.80 to 30.24 mm/h for sea surface and 0.789 to 33.11 mm/h for land surface according to the classification by precipitation type. Also, the analysis of retrievals located in Tibetan plateau is provided as an example to justify the robustness and performance of retrieving model.
基金Project supported by the Key Project of the National Natural Science Foundation of China(No.50835005)the National High Technology Research and Development Program of China(No.2009AA03A1A3)
文摘In order to determine the environmental effects on the luminescence properties of a phosphor layer for high-power light emitting diodes, a high humidity and temperature test (85℃/85%RH) and a thermal aging test (85℃) were performed on silicone/YAG phosphor composites. The luminescence properties of silicone/phosphor composites are monitored by a fluorescence spectrometer. The results show that high temperature could result in an increase in conversion efficiency of composites during the early aging stage and red shift of YAG phosphor; and high humidity could result in a significant decrease in conversion efficiency of composites while having a small influence upon the optimal excitation wavelength of the YAG phosphor.