期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ex situ aging effect on sulfonated poly(ether ether ketone) membrane:Hydration-dehydration cycling and hydrothermal treatment
1
作者 Seung-Young Choi Kyeong Sik Jin 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第7期583-592,I0014,共11页
Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation ... Prolonged hydrothermal treatment for sulfonated poly(ether ether ketone) membranes induces mechanical degradation and developing hydrophilic-hydrophobic phase separation, simultaneously. The enhanced phase separation provides incremental proton conductivity to the membranes, whereas mechanical degradation drastically reduces device stability. On this basis, we describe here the effects of two different ex situ aging processes on sulfonated poly(ether ether ketone) membranes: hydrationdehydration cycling and prolonged hydrothermal treatment. Both aged membranes exhibited enhanced phase separation under the hydrated conditions, as characterized by small angle X-ray scattering.However, when the aged membranes were dried again, the nanostructure of the membranes aged via the hydration-dehydration cycling was recoverable, whereas that of the membranes aged via prolonged hydrothermal treatment was irreversible. Furthermore, the two differently aged membranes showed clear differences in thermal, mechanical, and electrochemical properties. Finally, we implemented both aged membranes in fuel cell application. The sample aged via hydration-dehydration cycling maintained its improved cell performance, whereas the sample aged via hydrothermal treatment showed drastically reduced cell performance after durability test for 50 h. 展开更多
关键词 Sulfonated poly(ether ether ketone) humidity cycle test Ex situ aging Proton exchange membrane Fuel cell
下载PDF
Design Research of a Novel Aftercool-Humidifier Concept for Humid Air Turbine Cycle
2
作者 ZHANG Junzheng XU Zhen 《Journal of Thermal Science》 SCIE EI CAS CSCD 2024年第3期951-969,共19页
Humid air turbine cycle(HAT)has potential of electrical efficiencies comparable to combined cycle,with lower investment cost and NO_(x) emission.The typical heat exchanger network of HAT consists of intercooler(if the... Humid air turbine cycle(HAT)has potential of electrical efficiencies comparable to combined cycle,with lower investment cost and NO_(x) emission.The typical heat exchanger network of HAT consists of intercooler(if there is),aftercooler,recuperator,economizer and humidifier,which brings higher efficiency but makes the system more complex.To simplify HAT layout,a novel humidifier concept is proposed by integrating the aftercooler into traditional counter-current humidifier.Based on this concept,a one-dimensional model including pressure drop and exergy calculation is established to distinguish the thermodynamic and hydrodynamic characteristics,and then the structural parameters,such as the number of rows and columns,tube diameter,pitch and type for a micro HAT are identified.The results show that the aftercool-humidifier plays the same role as original aftercooler and humidifier,and can match the in-tube air,out-tube air and water stream well with lower volume.In the case of micro HAT cycle,the volume of heat and mass transfer area can be reduced by 47%compared with traditional design.The major thermal resistance occurred in the convection heat transfer process inside the tube;however,using enhanced tube cannot effectively improve the compactness of device. 展开更多
关键词 humid air turbine cycle HUMIDIFIER thermodynamic analysis one-dimensional model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部