With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,whic...With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.展开更多
This study proposes a hybrid network model based on data enhancement to address the problem of low accuracy in photovoltaic(PV)power prediction that arises due to insuffi cient data samples for new PV plants.First,a t...This study proposes a hybrid network model based on data enhancement to address the problem of low accuracy in photovoltaic(PV)power prediction that arises due to insuffi cient data samples for new PV plants.First,a time-series gener ative adversarial network(TimeGAN)is used to learn the distri bution law of the original PV data samples and the temporal correlations between their features,and these are then used to generate new samples to enhance the training set.Subsequently,a hybrid network model that fuses bi-directional long-short term memory(BiLSTM)network with attention mechanism(AM)in the framework of deep&cross network(DCN)is con structed to effectively extract deep information from the origi nal features while enhancing the impact of important informa tion on the prediction results.Finally,the hyperparameters in the hybrid network model are optimized using the whale optimi zation algorithm(WOA),which prevents the network model from falling into a local optimum and gives the best prediction results.The simulation results show that after data enhance ment by TimeGAN,the hybrid prediction model proposed in this paper can effectively improve the accuracy of short-term PV power prediction and has wide applicability.展开更多
基金supported by the National Key R&D Program of China(2018AAA0101500).
文摘With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.
基金supported by the Regional Innovation and Development Joint Fund of National Natural Science Foundation of China(No.U19A20106)the Science and Technology Major Projects of Anhui Province(No.202203f07020003)the Science and Technology Project of State Grid Corporation of China(No.52120522000F).
文摘This study proposes a hybrid network model based on data enhancement to address the problem of low accuracy in photovoltaic(PV)power prediction that arises due to insuffi cient data samples for new PV plants.First,a time-series gener ative adversarial network(TimeGAN)is used to learn the distri bution law of the original PV data samples and the temporal correlations between their features,and these are then used to generate new samples to enhance the training set.Subsequently,a hybrid network model that fuses bi-directional long-short term memory(BiLSTM)network with attention mechanism(AM)in the framework of deep&cross network(DCN)is con structed to effectively extract deep information from the origi nal features while enhancing the impact of important informa tion on the prediction results.Finally,the hyperparameters in the hybrid network model are optimized using the whale optimi zation algorithm(WOA),which prevents the network model from falling into a local optimum and gives the best prediction results.The simulation results show that after data enhance ment by TimeGAN,the hybrid prediction model proposed in this paper can effectively improve the accuracy of short-term PV power prediction and has wide applicability.