When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristi...When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristics of channel in power line carrier communication of low voltage distribution grid. The algorithm is easy to fall into premature and local optimization. Proposed an automatic network algorithm based on improved transmission delay and the load factor as the evaluation factors. With the requirements of QoS, a logical topology of power line communication network is established. By the experiment of MATLAB simulation, verify that the improved Dynamic hybrid ant colony genetic algorithm (DH_ACGA) algorithm has improved the communication performance, which solved the QoS routing problems of power communication to some extent.展开更多
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ...The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms.展开更多
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi...An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat.展开更多
This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satell...This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.展开更多
To obtain accurate search results and advocate the use of human effort in discovering knowledge, we propose a method based on Ant Colony Algorithm (ACA). The proposed method simulates the behavior of ants searching ...To obtain accurate search results and advocate the use of human effort in discovering knowledge, we propose a method based on Ant Colony Algorithm (ACA). The proposed method simulates the behavior of ants searching for food. Specific features such as the behavior of ants searching for food, their established search paths, and the ant "neighborhood" profile are investigated. The investigation results reveal that the behavior of people searching for useful information resembles that of ants searching for food. We also use semantic annotation and the decreasing matrix dimension approach to accelerate the food searching process an.d shorten the distance between the query starting points and the ultimate answers. A user behavior model is constructed based on personal and domain ontologies. Experimental evaluation with the enhanced ACA has two parts: (1) estimating the efficiency of information retrieval with user interests considered and (2) identifying how to weigh usage and rate user data during recommendation.展开更多
文摘When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristics of channel in power line carrier communication of low voltage distribution grid. The algorithm is easy to fall into premature and local optimization. Proposed an automatic network algorithm based on improved transmission delay and the load factor as the evaluation factors. With the requirements of QoS, a logical topology of power line communication network is established. By the experiment of MATLAB simulation, verify that the improved Dynamic hybrid ant colony genetic algorithm (DH_ACGA) algorithm has improved the communication performance, which solved the QoS routing problems of power communication to some extent.
基金National Natural Science Foundation of China(No.70971020)the Subject of Ministry of Education of Hunan Province,China(No.13C818)+3 种基金the Project of Industrial Science and Technology Support of Hengyang City,Hunan Province,China(No.2013KG63)the Open Project Program of Artificial Intelligence Key Laboratory of Sichuan Province,Sichuan University of Science and Engineering,China(No.2012RYJ03)the Fund Project of Humanities and Social Sciences,Ministry of Education of China(No.13YJCZH147)the Special Fund for Shanghai Colleges' Outstanding Young Teachers' Scientific Research Projects,China(No.ZZGJD12033)
文摘The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms.
基金supported by the National Aviation Science Foundation of China(20090196002)
文摘An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat.
基金supported by the National Natural Science Foundation of China(7127106671171065+1 种基金71202168)the Natural Science Foundation of Heilongjiang Province(GC13D506)
文摘This study concentrates of the new generation of the agile (AEOS). AEOS is a key study object on management problems earth observation satellite in many countries because of its many advantages over non-agile satellites. Hence, the mission planning and scheduling of AEOS is a popular research problem. This research investigates AEOS characteristics and establishes a mission planning model based on the working principle and constraints of AEOS as per analysis. To solve the scheduling issue of AEOS, several improved algorithms are developed. Simulation results suggest that these algorithms are effective.
文摘To obtain accurate search results and advocate the use of human effort in discovering knowledge, we propose a method based on Ant Colony Algorithm (ACA). The proposed method simulates the behavior of ants searching for food. Specific features such as the behavior of ants searching for food, their established search paths, and the ant "neighborhood" profile are investigated. The investigation results reveal that the behavior of people searching for useful information resembles that of ants searching for food. We also use semantic annotation and the decreasing matrix dimension approach to accelerate the food searching process an.d shorten the distance between the query starting points and the ultimate answers. A user behavior model is constructed based on personal and domain ontologies. Experimental evaluation with the enhanced ACA has two parts: (1) estimating the efficiency of information retrieval with user interests considered and (2) identifying how to weigh usage and rate user data during recommendation.