The paper reports on 3D numerical simulations of unsteady compressible airflow in a blade cascade consisting of flat profiles using a hybrid LES/RANS approach including a transition model.As a first step towards simul...The paper reports on 3D numerical simulations of unsteady compressible airflow in a blade cascade consisting of flat profiles using a hybrid LES/RANS approach including a transition model.As a first step towards simulation of blade flutter in turbomachinery,various incidence angle offsets of the middle blade were modeled.All simulations were run for the flow regime characterized by outlet isentropic Mach number M_(is)=0.5and zero incidence.The results of the LES/RANS simulations(pressure and Mach number distributions)were compared to a baseline RANS model,and to experimental data measured in a high-speed wind tunnel.The numerical results show that both methods overpredict flow separation taking place at the leading edge.In this regard,the hybrid LES/RANS method does not provide superior results compared to the traditional RANS simulations.Nevertheless,the LES/RANS results also capture vortex shedding from the blunt trailing edge.The frequency of the trailing edge vortex shedding in CFD simulations matches perfectly the spectral peak recorded during wind tunnel measurements.展开更多
Unsteady RANS(URANS),hybrid LES/RANS and IDDES simulations were conducted to numerically investigate the velocity field around,and pressures distribution and forces over a square cylinder immersed in a uniform,steady ...Unsteady RANS(URANS),hybrid LES/RANS and IDDES simulations were conducted to numerically investigate the velocity field around,and pressures distribution and forces over a square cylinder immersed in a uniform,steady oncoming flow with Reynolds number Re=21,400.The vortex shedding responses in terms of Strouhal number,the pressure distribution,the velocity profile and the velocity fluctuations obtained by numerical simulations are compared with experimental data.Compared with 2D URANS simulation,3D simulations using hybrid LES/RANS and IDDES models provide more accurate prediction on the responses in the wake,including mean streamwise velocity profile and rms velocity fluctuations.This also results in more accurate prediction of time-averaged surface pressure coefficient on the rear surface obtained by 3D hybrid LES/RANS and IDDES simulations than by URANS simulation.When a hybrid LES/RANS model or IDDES model is used,a more accurate prediction for either pressure coefficient or velocity profile(especially in the far wake region)is not guaranteed by increasing the mesh resolution along the spanwise direction of the square cylinder.展开更多
In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computat...In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computational fluid dynamics(CFD)model can flexibly choose any existing large-eddy simulation(LES)method combined with RANS method to calculate the flow field.In addition,the DLES model and DDES model are selected as typical representatives of the turbulence model to compare the capture ability of the flow field mechanism.The internal flow field including the y+value,velocity distribution,turbulent kinetic energy and vortex structures is comprehensively analyzed.Finally,the results show that the new model has enough sensitivity to capture the information of the flow field and has more consistent velocity distribution with the experimental value,which shows its potential in practical engineering applications to some extent.展开更多
Supersonic unsteady flows of two and three dimensional cavities, which have the same basic measures, length, depth and aft wall angle, are investigated numerically by using hybrid RANS/LES (Reynolds-Averaged Navier-S...Supersonic unsteady flows of two and three dimensional cavities, which have the same basic measures, length, depth and aft wall angle, are investigated numerically by using hybrid RANS/LES (Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation) method. In particular, the mass exchange and oscillation characteristics of the cavities are analyzed and compared. It is shown that the two and three dimensional cavities have almost the same residence time except that the three dimensional one has a little larger mass decay at beginning, which may attribute to the influence of the streamwise vortices. The two dimensional cavity has three dominant frequencies while the three dimensional one has only one oscillation dominant frequency, that is, the three dimensional effects simplify the oscillation modes in the cavity. The distributions of oscillation energy are approximately universal in the transverse and spanwise directions. However, the oscillation energy in the streamwise direction shows a hybrid monotone/periodic distribution, which may be caused by the streamwise-propagating pressure waves.展开更多
This paper presents hybrid Reynolds-averaged Navier-Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid meth- ...This paper presents hybrid Reynolds-averaged Navier-Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid meth- ods studied in this work include the detached eddy simulation (DES) based on Spalart-Allmaras (S-A), Menter's k-ω shear-stress-transport (SST) and k-o9 with weakly nonlinear eddy viscosity formulation (Wilcox-Durbin+, WD+) models and the zonalANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower-upper symmetric-Gauss-Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows.展开更多
Two Delayed-Detached Eddy Simulation(DDES) models, and a Large-Eddy Simulation(LES) model are used to investigate the turbulent flows and mixed convection between a hot plate and a cold plate via the software FLUENT. ...Two Delayed-Detached Eddy Simulation(DDES) models, and a Large-Eddy Simulation(LES) model are used to investigate the turbulent flows and mixed convection between a hot plate and a cold plate via the software FLUENT. The two DDES models include Production-limited DDES(PL-DDES) and Improved DDES(IDDES) models.The Wall-Adapting Local Eddy-Viscosity(WALE) model is the used LES model. The numerical computations are performed at Reynolds number Reb= 4494 and different Richardson numbers Ri = 0.025, 0.048, 0.1. The comparing data is from the Direct Numerical Simulation(DNS) at Reb= 4494 and Ri = 0.048. The comparison reveals that the two DDES models have better performance in predicting time-averaged parameters than the WALE model in the aiding flow. The best predicted time-averaged results are obtained by the PL-DDES model in the opposing flow. Furthermore, the results of different Ri obtained by the PL-DDES model agree well with the DNS data.展开更多
The paper presents 1) the numerical results of RANS (Reynolds Averaging Navier-Stokes) simulations for two versions of the premixed combustion GE10 burners: the old one with non-premixed and modified one with swirled ...The paper presents 1) the numerical results of RANS (Reynolds Averaging Navier-Stokes) simulations for two versions of the premixed combustion GE10 burners: the old one with non-premixed and modified one with swirled premixed pilot flames;and 2) the numerical results of joint RANS/LES (Large Eddy Simulation) modelling of the ONERA model burner and a simplified GE10 combustor. The original joint RANS/LES approach is based on using the Kolmogorov theory for modelling sub-grid turbulence and combustion intensity and using RANS numerical results for closure the LES model equations. The main conclusion is that developed joint RANS/LES approch is the efficient timesaving tool for simulations both the average and instantaneous fields of parameters in gas turbine and boiler burners with premixed combustion.展开更多
The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, ...The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, coupled with the high order adaptive dissipation scheme. The spacing between adjacent cylinders is sub-critical (1.435D). IDDES prediction of two cylinders (TC) with the same spacing is compared to experimental data for validation, and the numerical results agree well with the available measurements, except for the asymmetry in the gap region. The flow past TriC is investigated using the same method. Generally, the mean flow quantities past TriC, such as the velocity, pressure, and vorticity, are similar to the corresponding components of TC. However, the pressure fluctuations on the TriC surface are uniformly larger than those on TC. Meanwhile, the instantaneous flows past TriC are much more complex. The periodical blockage in the first gap region is found in the TriC case and leads to the up-and-down movement of shear layer in the second gap region.展开更多
A nonqinear eddy viscosity model (NLEVM) and a scalable hybrid Reynolds averaged Navier-Stokes/large eddy simula- tion (RANS/LES) strategy are developed to improve the capability of the eddy viscosity model (EVM...A nonqinear eddy viscosity model (NLEVM) and a scalable hybrid Reynolds averaged Navier-Stokes/large eddy simula- tion (RANS/LES) strategy are developed to improve the capability of the eddy viscosity model (EVM) to simulate complex flows featuring separations and unsteady motions. To study the performance of the NLEVM, numerical simulations around S809 airfoil are carried out and the results show that the NLEVM performs much better when a large separation occurs. Calculated results of the flow around a triangular cylinder show that the NLEVM can improve the precision of the flow fields to some extents, but the error is still considerable, and the small turbulence structures can not be clearly captured as the EVM. Whereas the scalable hybrid RANS/LES model based on the NLEVM is fairy effective on resolving the turbulent structures and can give more satisfactory predictions of the flow fields.展开更多
Cloud cavitating flow is highly turbulent and dominated by coherent large-scale anisotropic vortical structures. For the numer- ical investigation of such a class of flow, large eddy simulation (LES) is a reliable m...Cloud cavitating flow is highly turbulent and dominated by coherent large-scale anisotropic vortical structures. For the numer- ical investigation of such a class of flow, large eddy simulation (LES) is a reliable method but it is computationally extremely costly in engineering applications. An efficient approach to reduce the computational cost is to combine Reynolds-averaged Navier-Stokes (RANS) equations with LES used only in the parts of interest, such as massively separated flow regions. A new hybrid RANS/LES model, the modified filter-based method (FBM), is proposed in the present study which can perform RANS or LES depending on the numerical resolution. Compared to the original FBM, the new method has three modifications: the state-of-the-art shear stress transport (SST) model replaces the k-c model as a baseline RANS model. A shielding function is introduced to obviate the switch from RANS to LES occurring inside the boundary layer. An appropriate threshold controlling the switch from RANS to LES is added to achieve an optimal predictive accuracy. The new model is assessed for its predictive capability of highly unsteady cavitating flows in a typical case of cloud cavitation around a NACA66 hydrofoil. The new mod- el results are compared with data obtained from the Smagorinsky LES and SST model based on the same homogeneous Zwart cavitation model. It is found that the modified FBM method has significant advantages over SST model in all aspects of pre- dicted instantaneous and mean flow field, and its predictive accuracy is comparable to the Smagorinsky LES model even using a much coarser grid in the simulations.展开更多
Accurate predictions of Shock Waves and Boundary Layer Interaction(SWBLI)and strong Shock Waves and Wake Vortices Interaction(SWWVI)in a highly-loaded turbine propose challenges to the currently widely used Reynolds-A...Accurate predictions of Shock Waves and Boundary Layer Interaction(SWBLI)and strong Shock Waves and Wake Vortices Interaction(SWWVI)in a highly-loaded turbine propose challenges to the currently widely used Reynolds-Averaged Navier-Stokes(RANS)model.In this work,the SWBLI and the SWWVI in a highly-loaded Nozzle Guide Vane(NGV)are studied using a hybrid RANS/LES strategy.The Turbulence Kinetic Energy(TKE)budget and the Proper Orthogonal Decomposition(POD)method are used to analyze flow mechanisms.Results show that this hybrid RANS/LES method can obtain detailed flow structures for flow mechanisms analysis.Strong shock waves induce boundary layer separation,while the presence of a separation bubble can in turn lead to a Mach reflection phenomenon.The shock waves cause trailing-edge vortices to break clearly,and the wakes,in turn,can change the shocks intensity and direction.Furthermore,the Entropy Generation Rate(EGR)is used to analyze the irreversible loss.It turns out that the SWWVI can reduce the flow field loss.There are several weak shock waves in the NGV flow field,which can increase the irreversible loss.This work offers flow mechanisms analysis and presents the EGR distribution in SWBLI and SWWVI areas in a transonic turbine blade.展开更多
基金supported by the Czech Science Foundation(GACR)(Grant No.20-11537S)Institutional support RVO:61388998。
文摘The paper reports on 3D numerical simulations of unsteady compressible airflow in a blade cascade consisting of flat profiles using a hybrid LES/RANS approach including a transition model.As a first step towards simulation of blade flutter in turbomachinery,various incidence angle offsets of the middle blade were modeled.All simulations were run for the flow regime characterized by outlet isentropic Mach number M_(is)=0.5and zero incidence.The results of the LES/RANS simulations(pressure and Mach number distributions)were compared to a baseline RANS model,and to experimental data measured in a high-speed wind tunnel.The numerical results show that both methods overpredict flow separation taking place at the leading edge.In this regard,the hybrid LES/RANS method does not provide superior results compared to the traditional RANS simulations.Nevertheless,the LES/RANS results also capture vortex shedding from the blunt trailing edge.The frequency of the trailing edge vortex shedding in CFD simulations matches perfectly the spectral peak recorded during wind tunnel measurements.
基金This work was performed while the author served as the National Institute of Standards and Technology(NIST)Director's Postdoctoral Research AssociateThe funding comes from the Structure Performance for Multi-hazards Progam provided by Materials and Structure Systems Division of Engineering Lab of NIST.
文摘Unsteady RANS(URANS),hybrid LES/RANS and IDDES simulations were conducted to numerically investigate the velocity field around,and pressures distribution and forces over a square cylinder immersed in a uniform,steady oncoming flow with Reynolds number Re=21,400.The vortex shedding responses in terms of Strouhal number,the pressure distribution,the velocity profile and the velocity fluctuations obtained by numerical simulations are compared with experimental data.Compared with 2D URANS simulation,3D simulations using hybrid LES/RANS and IDDES models provide more accurate prediction on the responses in the wake,including mean streamwise velocity profile and rms velocity fluctuations.This also results in more accurate prediction of time-averaged surface pressure coefficient on the rear surface obtained by 3D hybrid LES/RANS and IDDES simulations than by URANS simulation.When a hybrid LES/RANS model or IDDES model is used,a more accurate prediction for either pressure coefficient or velocity profile(especially in the far wake region)is not guaranteed by increasing the mesh resolution along the spanwise direction of the square cylinder.
基金Supported by the Open Fund of Key Laboratory of Road Construction Technology and Equipment of Chang’an University,Ministry of Education(310825171104)the Advanced Manufacturing Projects of Government and University Co-construction Program Funded by Jilin Province(SXGJSF2017-2)
文摘In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computational fluid dynamics(CFD)model can flexibly choose any existing large-eddy simulation(LES)method combined with RANS method to calculate the flow field.In addition,the DLES model and DDES model are selected as typical representatives of the turbulence model to compare the capture ability of the flow field mechanism.The internal flow field including the y+value,velocity distribution,turbulent kinetic energy and vortex structures is comprehensively analyzed.Finally,the results show that the new model has enough sensitivity to capture the information of the flow field and has more consistent velocity distribution with the experimental value,which shows its potential in practical engineering applications to some extent.
文摘Supersonic unsteady flows of two and three dimensional cavities, which have the same basic measures, length, depth and aft wall angle, are investigated numerically by using hybrid RANS/LES (Reynolds-Averaged Navier-Stokes/Large-Eddy Simulation) method. In particular, the mass exchange and oscillation characteristics of the cavities are analyzed and compared. It is shown that the two and three dimensional cavities have almost the same residence time except that the three dimensional one has a little larger mass decay at beginning, which may attribute to the influence of the streamwise vortices. The two dimensional cavity has three dominant frequencies while the three dimensional one has only one oscillation dominant frequency, that is, the three dimensional effects simplify the oscillation modes in the cavity. The distributions of oscillation energy are approximately universal in the transverse and spanwise directions. However, the oscillation energy in the streamwise direction shows a hybrid monotone/periodic distribution, which may be caused by the streamwise-propagating pressure waves.
基金The project supported by the National Natural Science Foundation of China (10502030 and 90505005)
文摘This paper presents hybrid Reynolds-averaged Navier-Stokes (RANS) and large-eddy-simulation (LES) methods for the separated flows at high angles of attack around a 6:1 prolate spheroid. The RANS/LES hybrid meth- ods studied in this work include the detached eddy simulation (DES) based on Spalart-Allmaras (S-A), Menter's k-ω shear-stress-transport (SST) and k-o9 with weakly nonlinear eddy viscosity formulation (Wilcox-Durbin+, WD+) models and the zonalANS/LES methods based on the SST and WD+ models. The switch from RANS near the wall to LES in the core flow region is smooth through the implementation of a flow-dependent blending function for the zonal hybrid method. All the hybrid methods are designed to have a RANS mode for the attached flows and have a LES behavior for the separated flows. The main objective of this paper is to apply the hybrid methods for the high Reynolds number separated flows around prolate spheroid at high-incidences. A fourth-order central scheme with fourth-order artificial viscosity is applied for spatial differencing. The fully implicit lower-upper symmetric-Gauss-Seidel with pseudo time sub-iteration is taken as the temporal differentiation. Comparisons with available measurements are carried out for pressure distribution, skin friction, and profiles of velocity, etc. Reasonable agreement with the experiments, accounting for the effect on grids and fundamental turbulence models, is obtained for the separation flows.
基金Supported by the Program of International Science and Technology Cooperation of China(2016YFE0118100)Dongguan Innovative Research team Program(2014607119).
文摘Two Delayed-Detached Eddy Simulation(DDES) models, and a Large-Eddy Simulation(LES) model are used to investigate the turbulent flows and mixed convection between a hot plate and a cold plate via the software FLUENT. The two DDES models include Production-limited DDES(PL-DDES) and Improved DDES(IDDES) models.The Wall-Adapting Local Eddy-Viscosity(WALE) model is the used LES model. The numerical computations are performed at Reynolds number Reb= 4494 and different Richardson numbers Ri = 0.025, 0.048, 0.1. The comparing data is from the Direct Numerical Simulation(DNS) at Reb= 4494 and Ri = 0.048. The comparison reveals that the two DDES models have better performance in predicting time-averaged parameters than the WALE model in the aiding flow. The best predicted time-averaged results are obtained by the PL-DDES model in the opposing flow. Furthermore, the results of different Ri obtained by the PL-DDES model agree well with the DNS data.
文摘The paper presents 1) the numerical results of RANS (Reynolds Averaging Navier-Stokes) simulations for two versions of the premixed combustion GE10 burners: the old one with non-premixed and modified one with swirled premixed pilot flames;and 2) the numerical results of joint RANS/LES (Large Eddy Simulation) modelling of the ONERA model burner and a simplified GE10 combustor. The original joint RANS/LES approach is based on using the Kolmogorov theory for modelling sub-grid turbulence and combustion intensity and using RANS numerical results for closure the LES model equations. The main conclusion is that developed joint RANS/LES approch is the efficient timesaving tool for simulations both the average and instantaneous fields of parameters in gas turbine and boiler burners with premixed combustion.
基金supported by the National Natural Science Foundation of China (Grant 11372159)
文摘The massively separated flow past triple cylin- ders (TriC) in tandem arrangement is simulated using the improved delayed detached-eddy simulation (IDDES) method based on the shear stress transport (SST) model, coupled with the high order adaptive dissipation scheme. The spacing between adjacent cylinders is sub-critical (1.435D). IDDES prediction of two cylinders (TC) with the same spacing is compared to experimental data for validation, and the numerical results agree well with the available measurements, except for the asymmetry in the gap region. The flow past TriC is investigated using the same method. Generally, the mean flow quantities past TriC, such as the velocity, pressure, and vorticity, are similar to the corresponding components of TC. However, the pressure fluctuations on the TriC surface are uniformly larger than those on TC. Meanwhile, the instantaneous flows past TriC are much more complex. The periodical blockage in the first gap region is found in the TriC case and leads to the up-and-down movement of shear layer in the second gap region.
基金Project supported by the National Natural Science Foun-dation of China(Grant Nos.51179100,51279184)
文摘A nonqinear eddy viscosity model (NLEVM) and a scalable hybrid Reynolds averaged Navier-Stokes/large eddy simula- tion (RANS/LES) strategy are developed to improve the capability of the eddy viscosity model (EVM) to simulate complex flows featuring separations and unsteady motions. To study the performance of the NLEVM, numerical simulations around S809 airfoil are carried out and the results show that the NLEVM performs much better when a large separation occurs. Calculated results of the flow around a triangular cylinder show that the NLEVM can improve the precision of the flow fields to some extents, but the error is still considerable, and the small turbulence structures can not be clearly captured as the EVM. Whereas the scalable hybrid RANS/LES model based on the NLEVM is fairy effective on resolving the turbulent structures and can give more satisfactory predictions of the flow fields.
基金supported by the National Natural Science Foundation of China(Grant No.51579118)
文摘Cloud cavitating flow is highly turbulent and dominated by coherent large-scale anisotropic vortical structures. For the numer- ical investigation of such a class of flow, large eddy simulation (LES) is a reliable method but it is computationally extremely costly in engineering applications. An efficient approach to reduce the computational cost is to combine Reynolds-averaged Navier-Stokes (RANS) equations with LES used only in the parts of interest, such as massively separated flow regions. A new hybrid RANS/LES model, the modified filter-based method (FBM), is proposed in the present study which can perform RANS or LES depending on the numerical resolution. Compared to the original FBM, the new method has three modifications: the state-of-the-art shear stress transport (SST) model replaces the k-c model as a baseline RANS model. A shielding function is introduced to obviate the switch from RANS to LES occurring inside the boundary layer. An appropriate threshold controlling the switch from RANS to LES is added to achieve an optimal predictive accuracy. The new model is assessed for its predictive capability of highly unsteady cavitating flows in a typical case of cloud cavitation around a NACA66 hydrofoil. The new mod- el results are compared with data obtained from the Smagorinsky LES and SST model based on the same homogeneous Zwart cavitation model. It is found that the modified FBM method has significant advantages over SST model in all aspects of pre- dicted instantaneous and mean flow field, and its predictive accuracy is comparable to the Smagorinsky LES model even using a much coarser grid in the simulations.
基金supported by the National Natural Science Foundation of China(No.51876098).
文摘Accurate predictions of Shock Waves and Boundary Layer Interaction(SWBLI)and strong Shock Waves and Wake Vortices Interaction(SWWVI)in a highly-loaded turbine propose challenges to the currently widely used Reynolds-Averaged Navier-Stokes(RANS)model.In this work,the SWBLI and the SWWVI in a highly-loaded Nozzle Guide Vane(NGV)are studied using a hybrid RANS/LES strategy.The Turbulence Kinetic Energy(TKE)budget and the Proper Orthogonal Decomposition(POD)method are used to analyze flow mechanisms.Results show that this hybrid RANS/LES method can obtain detailed flow structures for flow mechanisms analysis.Strong shock waves induce boundary layer separation,while the presence of a separation bubble can in turn lead to a Mach reflection phenomenon.The shock waves cause trailing-edge vortices to break clearly,and the wakes,in turn,can change the shocks intensity and direction.Furthermore,the Entropy Generation Rate(EGR)is used to analyze the irreversible loss.It turns out that the SWWVI can reduce the flow field loss.There are several weak shock waves in the NGV flow field,which can increase the irreversible loss.This work offers flow mechanisms analysis and presents the EGR distribution in SWBLI and SWWVI areas in a transonic turbine blade.