Synthetic dyes are substances that are relatively stable and difficult to degrade in wastewater treatment plants using normal physical,chemical or / and biological treatment. The present work explored the synergistic ...Synthetic dyes are substances that are relatively stable and difficult to degrade in wastewater treatment plants using normal physical,chemical or / and biological treatment. The present work explored the synergistic effect of non-thermal plasma( NTP) and biological wastewater treatment technologies on practical dye wastewater degradation by establishing a double dielectric barrier discharge( DDBD) system combined with a sequencing batch reactor( SBR) system. The biodegradation and degradation efficiency of the DDBD-SBR system was investigated. The investigation results indicated that the DDBD technology was effective in treating the practical dye wastewater as a pre-treatment process. After a 10-min treatment,although the total organic carbon( TOC) removal efficiency was not so significant, the decolouration and the biodegradation were improved greatly. The microbial toxicity test revealed that the sample after degradation became less toxic than the original dye,which demonstrated the treatment had a significant effect on the reduction of toxicity. In addition,the SBR technology remedied the defects of DDBD treatment and improved TOC removal efficiency noticeably. The hybrid DDBD-SBR system made full use of the advantages of the individual technologies and exhibited an efficient capability for practical dye wastewater treatment.展开更多
基金Key Basic Research of Shanghai Science and Technology Committee,China(No.11JC1400100)National Natural Science Foundations of China(Nos.51108070,51178093)+2 种基金Shanghai Pujiang Programmethe Program for New Century Excellent Talents in University,China(No.NCET-12-0826)Fundamental Research Funds for Central Universities,China
文摘Synthetic dyes are substances that are relatively stable and difficult to degrade in wastewater treatment plants using normal physical,chemical or / and biological treatment. The present work explored the synergistic effect of non-thermal plasma( NTP) and biological wastewater treatment technologies on practical dye wastewater degradation by establishing a double dielectric barrier discharge( DDBD) system combined with a sequencing batch reactor( SBR) system. The biodegradation and degradation efficiency of the DDBD-SBR system was investigated. The investigation results indicated that the DDBD technology was effective in treating the practical dye wastewater as a pre-treatment process. After a 10-min treatment,although the total organic carbon( TOC) removal efficiency was not so significant, the decolouration and the biodegradation were improved greatly. The microbial toxicity test revealed that the sample after degradation became less toxic than the original dye,which demonstrated the treatment had a significant effect on the reduction of toxicity. In addition,the SBR technology remedied the defects of DDBD treatment and improved TOC removal efficiency noticeably. The hybrid DDBD-SBR system made full use of the advantages of the individual technologies and exhibited an efficient capability for practical dye wastewater treatment.