期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Modeling and Analysis of Novel Integrated Radial Hybrid Magnetic Bearing for Magnetic Bearing Reaction Wheel 被引量:8
1
作者 HAN Bangcheng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期655-662,共8页
Conventional ball bearing reaction wheel used to control the attitude of spacecraft can't absorb the centrifugal force caused by imbalance of the wheel rotor,and there will be a torque spike at zero speed,which serio... Conventional ball bearing reaction wheel used to control the attitude of spacecraft can't absorb the centrifugal force caused by imbalance of the wheel rotor,and there will be a torque spike at zero speed,which seriously influences the accuracy and stability of spacecraft attitude control.Compared with traditional ball-bearing wheel,noncontact and no lubrication are the remarkable features of the magnetic bearing reaction wheel,and which can solve the high precision problems of wheel.In general,two radial magnetic bearings are needed in magnetic bearing wheel,and the design results in a relatively large axial dimension and smaller momentum-to-mass ratios.In this paper,a new type of magnetic bearing reaction wheel(MBRW) is introduced for satellite attitude control,and a novel integrated radial hybrid magnetic bearing(RHMB) with permanent magnet bias is designed to reduce the mass and minimize the size of the MBRW,etc.The equivalent magnetic circuit model for the RHMB is presented and a solution is found.The stiffness model is also presented,including current stiffness,position negative stiffness,as well as tilting current stiffness,tilting angular position negative stiffness,force and moment equilibrium equations.The design parameters of the RHMB are given according to the requirement of the MBRW with angular momentum of 30 N ? m ? s when the rotation speed of rotor reaches to 5 kr/min.The nonlinearity of the RHMB is shown by using the characteristic curves of force-control current-position,current stiffness,position stiffness,moment-control current-angular displacement,tilting current stiffness and tilting angular position stiffness considering all the rotor position within the clearance space and the control current.The proposed research ensures the performance of the radial magnetic bearing with permanent magnet bias,and provides theory basis for design of the magnetic bearing wheel. 展开更多
关键词 magnetic bearing reaction wheel radial hybrid magnetic bearing equivalent magnetic circuit current stiffness position negative stiffness tilting current stiffness tilting angular position stiffness
下载PDF
Influence of Particles on the Loading Capacity and the Temperature Rise of Water Film in Ultra-high Speed Hybrid Bearing 被引量:3
2
作者 ZHU Aibin LI Pei +2 位作者 ZHANG Yefan CHEN Wei YUAN Xiaoyang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第3期541-548,共8页
Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant an... Ultra-high speed machining technology enables high efficiency, high precision and high integrity of machined surface. Previous researches of hybrid bearing rarely consider influences of solid particles in lubricant and ultra-high speed of hybrid bearing, which cannot be ignored under the high speed and micro-space conditions of ultra-high speed water-lubricated hybrid bearing. Considering the impact of solid particles in lubricant, turbulence and temperature viscosity effects of lubricant, the influences of particles on pressure distribution, loading capacity and the temperature rise of the lubricant film with four-step-cavity ultra-high speed water-lubricated hybrid bearing are presented in the paper. The results show that loading capacity of the hybrid bearing can be affected by changing the viscosity of the lubricant, and large particles can improve the bearing loading capacity higher. The impact of water film temperature rise produced by solid particles in lubricant is related with particle diameter and minimum film thickness. Compared with the soft particles, hard particles cause the more increasing of water film temperature rise and loading capacity. When the speed of hybrid bearing increases, the impact of solid particles on hybrid bearing becomes increasingly apparent, especially for ultra-high speed water-lubricated hybrid bearing. This research presents influences of solid particles on the loading capacity and the temperature rise of water film in ultra-high speed hybrid bearings, the research conclusions provide a new method to evaluate the influence of solid particles in lubricant of ultra-high speed water-lubricated hybrid bearing, which is important to performance calculation of ultra-high speed hybrid bearings, design of filtration system, and safe operation of ultra-high speed hybrid bearings. 展开更多
关键词 hybrid bearing liquid-solid flow solid particles loading capacity temperature rise
下载PDF
Steady Characteristics of the Water-Lubricated Conical Bearings
3
作者 李胜波 敖宏瑞 +2 位作者 姜洪源 KORNEEV Andrey Yurievich SAVIN Leonid Alexeevich 《Journal of Donghua University(English Edition)》 EI CAS 2012年第2期115-122,共8页
The water-lubricated conical bearing has attracted attentions of researchers for its simple structure,easily adjusted gap ( film thickness ) , lower friction loss, and less pollution in application. A mathematic model... The water-lubricated conical bearing has attracted attentions of researchers for its simple structure,easily adjusted gap ( film thickness ) , lower friction loss, and less pollution in application. A mathematic model with consideration of the effects of turbulence,two-phase flow,and temperature on the pressure field at bearing surface is proposed here. Using this model,the Reynolds' equation and energy equation are solved in which the thermo-physical properties of the water as lubricant are taken into account. The dependency of characteristics of bearing,such as load-carrying capacity,flow rate ( pumping losses ) ,and frictional losses,on angular velocity, conical angle, and radial eccentricities, is presented. The research results are beneficial to the improvement of the efficiency of conical bearing and the environmental protection. 展开更多
关键词 water-lubricated conical bearing hybrid conical bearing load-carrying capacity flow rate frictional and pumping losses
下载PDF
Performance of High-Speed Grease Lubricated Hybrid Ceramic Ball Bearing
4
作者 李秀娟 王黎钦 古乐 《Tsinghua Science and Technology》 SCIE EI CAS 2004年第3期322-326,共5页
To simplify the lubricating system for high-speed bearings and improve its reliability, grease lu-bricated high-speed hybrid ceramic bearings were theoretically and experimentally researched. Bearings with an outer ra... To simplify the lubricating system for high-speed bearings and improve its reliability, grease lu-bricated high-speed hybrid ceramic bearings were theoretically and experimentally researched. Bearings with an outer race of 62 mm and eleven 9.525-mm balls were investigated. Traction coefficient and flash temperature between the bearing races and the balls were calculated and the results show that the traction coefficient of Si3N4 hybrid ceramic bearings is 74% that of the steel AISI 440B ones at 30 000 r/min and 1750 N, and the flash temperature of the hybrid bearings is 49% that of steel ones. Simulating the high-speed bearing rotational conditions, the grease lubricated hybrid ceramic ball bearings were tested and the results show that the power consumption of hybrid ceramic bearing lubricated by grease D at 24 000 r/min and axial load 1750 N is 80% that of steel ones. 展开更多
关键词 high-speed bearing hybrid ceramic bearing GREASE traction coefficient thermal analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部