The most remarkable characteristic of a metal belt-planetary gearcontinuously variable transmission is a wider ratio range and a bigger torque capacity than aconventional metal pushing belt continuously variable trans...The most remarkable characteristic of a metal belt-planetary gearcontinuously variable transmission is a wider ratio range and a bigger torque capacity than aconventional metal pushing belt continuously variable transmission. A parallel hybrid car with thistransmission system not only can reduce fuel consumption and pollutant emission at a ECE city cycle,but also can keep the motor working in the most efficiency area and can be started by a lower powermotor by oneself. At the same time, the continuously variable transmission system can realize thesmooth switch between the motor and the engine.展开更多
选注者言:最近,我也加入了“驾车一族”,我的小别克让我饱尝“飞驰”之乐。因此,我也更关心汽车的前景。本文向我们透露了许多研发新型汽车的最新消息。美国布什政府对研发氢燃料电池驱动的汽车的费用投入达12亿美元。但是,此消息刚刚宣...选注者言:最近,我也加入了“驾车一族”,我的小别克让我饱尝“飞驰”之乐。因此,我也更关心汽车的前景。本文向我们透露了许多研发新型汽车的最新消息。美国布什政府对研发氢燃料电池驱动的汽车的费用投入达12亿美元。但是,此消息刚刚宣布,MIT的研究就提出氢燃料电池驱动的汽车的不足:…uses sub-stantial energy and emits greenhouse gases.一种更环保更科学的汽车(hybrid cars/复合车)在日本的丰田和本田公司已经被投入生产。展开更多
Road transport exhaust emissions represent the main sources of atmospheric pollution in urban areas, due to the growing number of circulating vehicles and travelled distances. In order to reduce this pollution source,...Road transport exhaust emissions represent the main sources of atmospheric pollution in urban areas, due to the growing number of circulating vehicles and travelled distances. In order to reduce this pollution source, stricter emission standards are periodically set by governments through- out the world. Consequently, the concentrations of gaseous pollutants and particulate mass to be measured during type-approval tests of new vehicles are becoming progressively lower;moreover from 2011, diesel cars have to comply with particle number limit. In order to assess emission levels of different technology vehicles and investigate the use of a particulate number measurement technique at the exhaust of very low-emitting vehicles, an experimental activity was carried out on three in-use vehicles: a diesel car equipped with a particulate trap (DPF), a hybrid gasoline-elec- tric car and a bi-fuel passenger car fuelled with compressed natural gas (CNG). Cold and hot gaseous and particulate emission factors and fuel consumption were measured during the execution of real and regulatory driving cycles on a chassis dynamometer. Particulate was characterized in terms of mass only for the diesel car and of particle number for all vehicles. The emissions measured over the NEDC show that all three vehicles comply with their standard limits, except CO for CNG passenger car and NOx for diesel car. Cold start influences CO and HC emissions and fuel consumption for all the tested vehicles and in particular for the hybrid car. The real driving cycle is the most critical pattern for the emissions of almost all pollutants. During constant speed tests, the emissions of particles of hybrid car are an order of magnitude lower than those of the CNG car.展开更多
This paper presents a novel concept, the Hybrid Power Pack (HPP), which consists of a hybridization kit for transforming small city cars, powered by an original diesel engine, into a parallel hybrid vehicle. The study...This paper presents a novel concept, the Hybrid Power Pack (HPP), which consists of a hybridization kit for transforming small city cars, powered by an original diesel engine, into a parallel hybrid vehicle. The study was jointly conducted by the University of Rome “Sapienza” and the Enea Casaccia research center. The idea is to design a hybrid powertrain that can be installed in a typical microcar, which means that all systems and components will be influenced by the limited space available in the motor compartment of the vehicle. In this paper the details of the mechanical and electrical realization of the powertrain will be discussed and the simulation of a small city car equipped with HPP will be presented and the results discussed and analyzed. The hybrid system also includes the battery pack which is composed of twenty-four Li-ion cells made by EIG, connected in series. The storage system is controlled as regards the voltage and temperature by a Battery Management System (BMS). All the above components are connected and managed by a control unit. The HPP presented in this paper obtains a reduction in fuel consumption higher than 20%. The solution presented with the HPP with its management strategy and the addition of the “plug-in function” makes the hybrid vehicle suitable in terms of performance and consumption in every driving conditions. The ideal strategy behind the “plug-in function” could represent a guideline for further achievements and experimentations, because it offers a simple hardware layout and a real reduction in fuel consumption.展开更多
A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or...A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC.展开更多
城市空中交通(urban air mobility, UAM),是近期解决当前地面交通拥堵困境的有效方法。因此,研究飞行汽车典型飞行任务剖面下的动力系统工作特性至关重要。由于电池能量密度的限制以及纯电动飞行汽车的里程限制,因此使用油电混合作为飞...城市空中交通(urban air mobility, UAM),是近期解决当前地面交通拥堵困境的有效方法。因此,研究飞行汽车典型飞行任务剖面下的动力系统工作特性至关重要。由于电池能量密度的限制以及纯电动飞行汽车的里程限制,因此使用油电混合作为飞行汽车的动力系统更为合理。总结垂直起降飞行汽车(vertical takeoff and landing, VTOL)任务剖面下混动系统运行性能的相关研究。基于MATLAB Simulink,提出一种混合动力的协调方法,其中同时考虑两种操作模式。根据实际操作条件,预设垂直起降和平飞两种工况下不同的操作模式。在此基础上,研究作为主要电源的增程器调节功率流和提高增程器工作效率的电池协调。直流母线电压由DC/DC转换器调节,有利于电池组的整体寿命,实现了充电和放电状态期间的功率共享。仿真结果表明:可以很好地控制直流母线电压,并且增程器和电池之间的功率共享遵循设计。展开更多
基金This project is supported Fok Yingtung Education Foundation(No.81070)and National Natural Science Foundation of China(No.50005026).
文摘The most remarkable characteristic of a metal belt-planetary gearcontinuously variable transmission is a wider ratio range and a bigger torque capacity than aconventional metal pushing belt continuously variable transmission. A parallel hybrid car with thistransmission system not only can reduce fuel consumption and pollutant emission at a ECE city cycle,but also can keep the motor working in the most efficiency area and can be started by a lower powermotor by oneself. At the same time, the continuously variable transmission system can realize thesmooth switch between the motor and the engine.
文摘选注者言:最近,我也加入了“驾车一族”,我的小别克让我饱尝“飞驰”之乐。因此,我也更关心汽车的前景。本文向我们透露了许多研发新型汽车的最新消息。美国布什政府对研发氢燃料电池驱动的汽车的费用投入达12亿美元。但是,此消息刚刚宣布,MIT的研究就提出氢燃料电池驱动的汽车的不足:…uses sub-stantial energy and emits greenhouse gases.一种更环保更科学的汽车(hybrid cars/复合车)在日本的丰田和本田公司已经被投入生产。
文摘Road transport exhaust emissions represent the main sources of atmospheric pollution in urban areas, due to the growing number of circulating vehicles and travelled distances. In order to reduce this pollution source, stricter emission standards are periodically set by governments through- out the world. Consequently, the concentrations of gaseous pollutants and particulate mass to be measured during type-approval tests of new vehicles are becoming progressively lower;moreover from 2011, diesel cars have to comply with particle number limit. In order to assess emission levels of different technology vehicles and investigate the use of a particulate number measurement technique at the exhaust of very low-emitting vehicles, an experimental activity was carried out on three in-use vehicles: a diesel car equipped with a particulate trap (DPF), a hybrid gasoline-elec- tric car and a bi-fuel passenger car fuelled with compressed natural gas (CNG). Cold and hot gaseous and particulate emission factors and fuel consumption were measured during the execution of real and regulatory driving cycles on a chassis dynamometer. Particulate was characterized in terms of mass only for the diesel car and of particle number for all vehicles. The emissions measured over the NEDC show that all three vehicles comply with their standard limits, except CO for CNG passenger car and NOx for diesel car. Cold start influences CO and HC emissions and fuel consumption for all the tested vehicles and in particular for the hybrid car. The real driving cycle is the most critical pattern for the emissions of almost all pollutants. During constant speed tests, the emissions of particles of hybrid car are an order of magnitude lower than those of the CNG car.
文摘This paper presents a novel concept, the Hybrid Power Pack (HPP), which consists of a hybridization kit for transforming small city cars, powered by an original diesel engine, into a parallel hybrid vehicle. The study was jointly conducted by the University of Rome “Sapienza” and the Enea Casaccia research center. The idea is to design a hybrid powertrain that can be installed in a typical microcar, which means that all systems and components will be influenced by the limited space available in the motor compartment of the vehicle. In this paper the details of the mechanical and electrical realization of the powertrain will be discussed and the simulation of a small city car equipped with HPP will be presented and the results discussed and analyzed. The hybrid system also includes the battery pack which is composed of twenty-four Li-ion cells made by EIG, connected in series. The storage system is controlled as regards the voltage and temperature by a Battery Management System (BMS). All the above components are connected and managed by a control unit. The HPP presented in this paper obtains a reduction in fuel consumption higher than 20%. The solution presented with the HPP with its management strategy and the addition of the “plug-in function” makes the hybrid vehicle suitable in terms of performance and consumption in every driving conditions. The ideal strategy behind the “plug-in function” could represent a guideline for further achievements and experimentations, because it offers a simple hardware layout and a real reduction in fuel consumption.
基金supported by National Natural Science Foundation of China (Grant No. 60674097, Grant No. 60804018)Visiting Scholar Foundation of Key Laboratory of Optoelectronic Technology and Systems of Ministry of Education in Chongqing University of China, and Chongqing Municipal Natural Science Foundation of China (Grant No. 2008BB2407, Grant No. 2009AC3079, Grant No. 2009BB3416)
文摘A magneto-rheological(MR) semi-active suspension system with the controllable damping forces has received more attention in reducing the vibration of a vehicle. However, many control strategies only discussed one or two vibration states of the vehicle based on a quarter-car model or a half vehicle model via MR suspensions. They cannot provide a satisfying whole-vehicle performance on a road test. Hence, a full car vibration model via an MR suspension system is proposed. To reduce the heave, pitch and roll motion of the vehicle body and the vertical vibration of four wheels, a fuzzy hybrid controller for vibration attitude of full car via MR suspensions is proposed. First, a skyhook-fuzzy control scheme is designed to reduce the heave, roll and pitch motion of the vehicle body. Second, a revised ground hook control strategy is adopted to decrease the vertical vibration of the wheels. Finally, a hybrid control scheme based on a fuzzy reasoning method is proposed to tune the hybrid damping parameter, which is suitable for coordination the attitude of the vehicle body and the wheels. A test and control system for the vibration attitude of full car is set up. It is implemented on a car equipped with four MR suspensions. The results on random highway and rough road indicate that the fuzzy hybrid controller can decrease the vibration accelerations of the vehicle body and the wheels to 65%-80% and 80%-90%, respectively. It reduces the automotive vibrations of heave, roll and pitch more effectively than a passive suspension and an MR suspension with a traditional hybrid control scheme so that it achieves better ride comfort and road holding concurrently. This paper proposes a new fuzzy hybrid control(FHC) method for reducing vibration attitude of full car via MR suspensions and develops a road test to evaluate the FHC.
文摘城市空中交通(urban air mobility, UAM),是近期解决当前地面交通拥堵困境的有效方法。因此,研究飞行汽车典型飞行任务剖面下的动力系统工作特性至关重要。由于电池能量密度的限制以及纯电动飞行汽车的里程限制,因此使用油电混合作为飞行汽车的动力系统更为合理。总结垂直起降飞行汽车(vertical takeoff and landing, VTOL)任务剖面下混动系统运行性能的相关研究。基于MATLAB Simulink,提出一种混合动力的协调方法,其中同时考虑两种操作模式。根据实际操作条件,预设垂直起降和平飞两种工况下不同的操作模式。在此基础上,研究作为主要电源的增程器调节功率流和提高增程器工作效率的电池协调。直流母线电压由DC/DC转换器调节,有利于电池组的整体寿命,实现了充电和放电状态期间的功率共享。仿真结果表明:可以很好地控制直流母线电压,并且增程器和电池之间的功率共享遵循设计。