A novel inorganic-organic hybrid borate,[Al2(fum)(H3BO3)(OH) 4]n·n(H3BO3) (1,H2fum = fumaric acid) ,has been synthesized and characterized by single-crystal X-ray diffraction,FTIR and elemental analysis...A novel inorganic-organic hybrid borate,[Al2(fum)(H3BO3)(OH) 4]n·n(H3BO3) (1,H2fum = fumaric acid) ,has been synthesized and characterized by single-crystal X-ray diffraction,FTIR and elemental analysis. Crystal data for compound 1: orthorhombic,space group Pnma,a = 14.108(3) ,b = 6.9412(14) ,c = 14.995(3)A,V = 1468.3(5)A^3,Z = 4,Mr = 359.72,Dc = 1.627 g/cm^3,μ = 0.254 mm^-1,F(000) = 736,the final R = 0.0492 and wR = 0.1650 with I 〉 2σ(I) . In compound 1,each Al^Ⅲ ion is coordinated by six oxygen atoms to adopt a distorted octahedral geometry. Both fumarate anion and the coordinated boric acid act as bidentate bridging ligands to link two neighboring Al^Ⅲ centers simultaneously. Each Al^Ⅲ ion is bridged by two μ2-hydroxyl ligands to construct an infinite wave-like [Al2(fum)(H3BO3)(OH) 4]n chain. These one-dimensional chains form hydrogen bonds with free boric acid molecules giving rise to a three-dimensional supramolecular network.展开更多
Objective: The aim of this study was to detect micrometastases in bone marrow of primary breast cancer patients, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was det...Objective: The aim of this study was to detect micrometastases in bone marrow of primary breast cancer patients, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blot hybridization. Human breast cancer cell line T47D was mixed with bone marrow cells in different proportions. The positive detection rate was compared among RT-PCR, Southern blotting and immunohistochemistry (IHC) methods. Results: Cytokeratin 19 gene was expressed in all 6 positive control samples while the expression was not seen in 8 negative control samples. In all 54 patients 14 cases were CK-19 positive (25.9%) by RT-PCR, another positive signal was obtained in 5/54 (9.3%) of bone marrow samples by Southern blotting. The total positive cases are 19/54 (35.2%). CK-19 IHC+ cells were detected at a dilution of one T47D cell in 5×104 bone marrow cells, while the sensitivity detected by PCR and Southern blot hybridization was at 1∶5×105 and 1∶1×106, respectively. This demonstrates that RT-PCR and Southern blotting was at least 20 times more sensitive than the IHC method. The micrometastases positive rate of the larger tumor size group (>5.0 cm) was significantly (P<0.05) greater than that of the smaller tumor size group (0–2.0 cm). Conclusion: detection of micrometastases in bone marrow by RT-PCR and Southern blotting, using CK-19 as a biological marker, is highly sensitive and it is a method to be used for anticipating the prognosis of breast cancer patients.展开更多
Objective: The presence of lymph nodes and bone marrow micrometastases of patients with breast carcinoma by immunohistochemistry (IHC) methods has been strongly correlated to early recurrence and shorter overall survi...Objective: The presence of lymph nodes and bone marrow micrometastases of patients with breast carcinoma by immunohistochemistry (IHC) methods has been strongly correlated to early recurrence and shorter overall survival. The aim of this study was to detect micrometastases in matched sample pairs of lymph nodes and the bone marrow of primary breast cancer patients using a more sensitive method, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blot hybridization. Human breast cancer cell line T47D was mixed with bone marrow cells at different proportions. The positive detection rate was compared among RT-PCR, Southern blotting and IHC methods. Results: Cytokeratin 19 gene was expressed in all 6 positive control samples, while the expression wasn’t seen in 18 negative control samples. CK-19 IHC positive cells were detected at a dilution of one T47D cell in 5×105 bone marrow cells, while the sensitivity detected by PCR and Southern blot hybridization was at 1:5×104 and 1:106, respectively. In the samples from the 35 patients, we found CK-19 positive cells in 2 cases (5.7%) by IHC. CK-19 gene expression signal was detected in 14/35 (40%) by RT-PCR, and 17/35 (48.6%) by southern blotting. Four cases were micrometastases positive both in lymph node and bone marrow (11.4%). There was no correlation between CK-19 detection and other clinical parameters. Conclusion: combined detection of micrometastases in lymph node and bone marrow by RT-PCR and Southern blotting, using CK-19 as a biological marker, is a highly sensitive method for breast cancer.展开更多
DNA nanomaterials hold great promise in biomedical fields due to its excellent sequence programmability,molecular recognition ability and biocompatibility.Hybridization chain reaction(HCR)is a simple and efficient iso...DNA nanomaterials hold great promise in biomedical fields due to its excellent sequence programmability,molecular recognition ability and biocompatibility.Hybridization chain reaction(HCR)is a simple and efficient isothermal enzyme-free amplification strategy of DNA,generating nicked double helices with repeated units.Through the design of HCR hairpins,multiple nanomaterials with desired functions are assembled by DNA,exhibiting great potential in biomedical applications.Herein,the recent progress of HCR-based DNA nanomaterials for biosensing,bioimaging and therapeutics are summarized.Representative works are exemplified to demonstrate how HCR-based DNA nanomaterials are designed and constructed.The challenges and prospects of the development of HCR-based DNA nanomaterials are discussed.We envision that rationally designing HCR-based DNA nanomaterials will facilitate the development of biomedical applications.展开更多
构建一种基于杂交链式反应(hybridization chain reaction,HCR)扩增的适配体磁珠荧光传感器。巧妙设计序列HP和发卡序列H1、H2,其中HP是由适配体序列与触发序列结合而成的,并且序列互补形成稳定的二级结构。然后采用戊二醇反应和亲和素...构建一种基于杂交链式反应(hybridization chain reaction,HCR)扩增的适配体磁珠荧光传感器。巧妙设计序列HP和发卡序列H1、H2,其中HP是由适配体序列与触发序列结合而成的,并且序列互补形成稳定的二级结构。然后采用戊二醇反应和亲和素-生物素反应进行适配体功能化磁珠的制备。将阪崎肠杆菌与适配体磁珠一起孵育,HP中的适配体序列识别靶标,引起HP构象变化,露出触发序列,通过HCR触发H1和H2的链状组装,产生长双链DNA。荧光指示剂SYBR Green I以插层和小槽结合的方式与HCR产物的长双链结合。最后加入氧化石墨烯(graphene oxide,GO)后,游离的H1、H2和SYBR Green I将通过π-π堆积紧密吸附在GO表面,荧光信号被猝灭。HCR产物不能被吸附在GO表面,因此与HCR产物结合的SYBR Green I发出依赖于靶浓度的强荧光信号,从而实现阪崎肠杆菌的定量检测。本方法在纯培养条件下的检出限为2CFU/mL,对奶粉的检出限为8CFU/g,对奶粉样品的检测结果与传统微生物培养法具有良好的一致性。该方法具有无需DNA提取,快速、稳定性高、高特异性和高灵敏度等优点,因此为阪崎肠杆菌的现场快速检测提供了一种很有潜力的方法。展开更多
Accurate signal amplification in living cells is highly important in biomedical research and medical diagnostics.Benefiting from its enzyme-free,efficient isothermal signal amplification ability,hybridization chain re...Accurate signal amplification in living cells is highly important in biomedical research and medical diagnostics.Benefiting from its enzyme-free,efficient isothermal signal amplification ability,hybridization chain reaction(HCR)plays an important role in intracellular signal amplification;however,HCR fails the accurate signal amplification in the situation when the properties of some biological targets and analogues are too similar.Particularly,their signal amplification accuracy for mature mi RNAs is unsatisfactory due to the signal interference of precursor micro RNAs(abbreviated as pre-mi RNAs),which also contain the sequence of mature mi RNAs.Herein,we develop the first example of size-selective hybridization chain reaction probe for accurate signal amplification,which achieved accurate and sensitive biosensing of mature mi RNAs in living cancer cells.Our probe,termed as q Tcage,consists of a DNA nanocage for size-selective responsive to mature mi RNAs,as well as a quadrivalent tetrahedral DNA structure for HCR signal amplification.Benefiting from the size-selectivity of DNA nanocage,shorter mature mi RNAs(19–23 nt)rather than longer pre-mi RNAs(60–70 nt)could enter the cavity to release triggers strand,which activates HCR reaction for fluorescence signal recovery.The probe efficiently reduces signal interference of pre-mi RNAs and improves the imaging sensitivity for intracellular mature mi RNAs,which was successfully applied for mature mi RNAs imaging during drug treatment.Overall,this strategy provides the hybridization chain reaction with the feature of size-selective ability,which holds promise for further accurate signal amplification in biological processes study and clinical diagnostics.展开更多
In this work,we proposed a ratiometric silver nanoclusters(AgNCs)fluorescent assay by designing a bifunctional-blockeraided hybridization chain reaction(HCR).Hairpin probe 1(HP1)containing two special DNA fragments(5...In this work,we proposed a ratiometric silver nanoclusters(AgNCs)fluorescent assay by designing a bifunctional-blockeraided hybridization chain reaction(HCR).Hairpin probe 1(HP1)containing two special DNA fragments(5′-CAC CGC T-3′and 5′-ATT TGC CTT TTG GGG ACG GATA-3′)at two terminals creates a red-emitting AgNC nucleation sequence(rNS,5′-CAC CGC TAT TTG CCT TTT GGG GAC GGATA-3′).We found that the presence of a toehold fragment(5′-TGCCC-3′)in HP1 could silence the rNS.Upon the addition of a target nucleic acid,HCR of HP1 and hairpin probe 2(HP2)could be initiated,resulting in the formation of long chain of DNA duplexes with multibranched rNS.As the toehold fragment in HP1participated in generating duplexes,a strong emission of rNS-templated AgNCs was observed at 670 nm.More significantly,a bifunctional blocker was introduced not only to reduce the background red-emitting fluorescence but also to play as an internal green-emitting AgNCs nucleation sequence.On the one hand,the blocker could increase the signal-to-noise-ratio of the constructed biosensor,and on the other hand,the blocker also helped to prepare ratiometric HCR-AgNCs assay with self-calibrating ability to strengthen its reproducibility.Compared with the traditional HCR-AgNCs sensors,the developed ratiometric assay based on the bifunctional-blocker-aided HCR has higher reliability,which is important for the fabrication of biosensors in various fields for practical biosensing applications.展开更多
针对支持网络功能虚拟化的移动边缘计算网络中,移动用户的数据流请求通常需要经过由前向和后向服务功能链(Service Function Chain,SFC)共同组成的混合服务功能链(Hybrid SFC,H-SFC)进行处理.首先联合考虑移动用户的位置逗留概率及网络...针对支持网络功能虚拟化的移动边缘计算网络中,移动用户的数据流请求通常需要经过由前向和后向服务功能链(Service Function Chain,SFC)共同组成的混合服务功能链(Hybrid SFC,H-SFC)进行处理.首先联合考虑移动用户的位置逗留概率及网络资源约束,以最大化网络吞吐量为目标定义了移动用户的H-SFC部署问题,利用整数线性规划对该问题建模.然后设计了一个动态辅助边权图,以保证H-SFC的顺序需求,部署最少的H-SFC覆盖最多的移动逗留位置为目标,提出了由H-SFC预部署和H-SFC调整两个子算法构成的移动感知混合服务功能链部署算法(Mobility-Aware H-SFC Deployment Algorithm,MA-HSFC-DA)对原问题进行求解.仿真结果表明,与其它算法相比,MA-HSFC-DA可以显著提高网络资源的利用率,获得更高的流接受率和网络吞吐量.展开更多
Although it is common to eliminate the singularity of parallel mechanism by adding the branched chain with actuation redundancy, there is no theory and method for the configuration synthesis of the branched chain with...Although it is common to eliminate the singularity of parallel mechanism by adding the branched chain with actuation redundancy, there is no theory and method for the configuration synthesis of the branched chain with actuation redundancy in parallel mechanism. Branched chains with actuation redundancy are synthesized for eliminating interior singularity of 3-translational and 1-rotational(3T1R) parallel mechanisms. Guided by the discriminance method of hybrid screw group according to Grassmann line geometry, all the possibilities are listed for the occurrence of interior singularities in 3T1R parallel mechanism. Based on the linear relevance of screw system and the principles of eliminating parallel mechanism singularity with actuation redundancy, different types of branched chains with actuation redundancy are synthesized systematically to indicate the layout and the number of the branched chainsinterior with actuation redundancy. A general method is proposed for the configuration synthesis of the branched chains with actuation redundancy of the redundant parallel mechanism, and it builds a solid foundation for the subsequent performance optimization of the redundant actuation parallel mechanism.展开更多
基金supported by the Ningbo Natural Science Foundation (2009A610052)the "Qianjiang Talent" Programs of Zhejiang Province (2009R10032)the K. C. Wang Magna Fund in Ningbo University
文摘A novel inorganic-organic hybrid borate,[Al2(fum)(H3BO3)(OH) 4]n·n(H3BO3) (1,H2fum = fumaric acid) ,has been synthesized and characterized by single-crystal X-ray diffraction,FTIR and elemental analysis. Crystal data for compound 1: orthorhombic,space group Pnma,a = 14.108(3) ,b = 6.9412(14) ,c = 14.995(3)A,V = 1468.3(5)A^3,Z = 4,Mr = 359.72,Dc = 1.627 g/cm^3,μ = 0.254 mm^-1,F(000) = 736,the final R = 0.0492 and wR = 0.1650 with I 〉 2σ(I) . In compound 1,each Al^Ⅲ ion is coordinated by six oxygen atoms to adopt a distorted octahedral geometry. Both fumarate anion and the coordinated boric acid act as bidentate bridging ligands to link two neighboring Al^Ⅲ centers simultaneously. Each Al^Ⅲ ion is bridged by two μ2-hydroxyl ligands to construct an infinite wave-like [Al2(fum)(H3BO3)(OH) 4]n chain. These one-dimensional chains form hydrogen bonds with free boric acid molecules giving rise to a three-dimensional supramolecular network.
文摘Objective: The aim of this study was to detect micrometastases in bone marrow of primary breast cancer patients, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blot hybridization. Human breast cancer cell line T47D was mixed with bone marrow cells in different proportions. The positive detection rate was compared among RT-PCR, Southern blotting and immunohistochemistry (IHC) methods. Results: Cytokeratin 19 gene was expressed in all 6 positive control samples while the expression was not seen in 8 negative control samples. In all 54 patients 14 cases were CK-19 positive (25.9%) by RT-PCR, another positive signal was obtained in 5/54 (9.3%) of bone marrow samples by Southern blotting. The total positive cases are 19/54 (35.2%). CK-19 IHC+ cells were detected at a dilution of one T47D cell in 5×104 bone marrow cells, while the sensitivity detected by PCR and Southern blot hybridization was at 1∶5×105 and 1∶1×106, respectively. This demonstrates that RT-PCR and Southern blotting was at least 20 times more sensitive than the IHC method. The micrometastases positive rate of the larger tumor size group (>5.0 cm) was significantly (P<0.05) greater than that of the smaller tumor size group (0–2.0 cm). Conclusion: detection of micrometastases in bone marrow by RT-PCR and Southern blotting, using CK-19 as a biological marker, is highly sensitive and it is a method to be used for anticipating the prognosis of breast cancer patients.
基金a grant from the key project of breast cancer of Beijing Science & Technology Committee.
文摘Objective: The presence of lymph nodes and bone marrow micrometastases of patients with breast carcinoma by immunohistochemistry (IHC) methods has been strongly correlated to early recurrence and shorter overall survival. The aim of this study was to detect micrometastases in matched sample pairs of lymph nodes and the bone marrow of primary breast cancer patients using a more sensitive method, and compare with other clinical parameters. Methods: Cytokeratin 19 (CK-19) gene mRNA expression was detected by reverse transcriptase-polymerase chain reaction (RT-PCR) and Southern blot hybridization. Human breast cancer cell line T47D was mixed with bone marrow cells at different proportions. The positive detection rate was compared among RT-PCR, Southern blotting and IHC methods. Results: Cytokeratin 19 gene was expressed in all 6 positive control samples, while the expression wasn’t seen in 18 negative control samples. CK-19 IHC positive cells were detected at a dilution of one T47D cell in 5×105 bone marrow cells, while the sensitivity detected by PCR and Southern blot hybridization was at 1:5×104 and 1:106, respectively. In the samples from the 35 patients, we found CK-19 positive cells in 2 cases (5.7%) by IHC. CK-19 gene expression signal was detected in 14/35 (40%) by RT-PCR, and 17/35 (48.6%) by southern blotting. Four cases were micrometastases positive both in lymph node and bone marrow (11.4%). There was no correlation between CK-19 detection and other clinical parameters. Conclusion: combined detection of micrometastases in lymph node and bone marrow by RT-PCR and Southern blotting, using CK-19 as a biological marker, is a highly sensitive method for breast cancer.
基金supported in part by National Natural Science Foundation of China(Nos.22225505,22174097).
文摘DNA nanomaterials hold great promise in biomedical fields due to its excellent sequence programmability,molecular recognition ability and biocompatibility.Hybridization chain reaction(HCR)is a simple and efficient isothermal enzyme-free amplification strategy of DNA,generating nicked double helices with repeated units.Through the design of HCR hairpins,multiple nanomaterials with desired functions are assembled by DNA,exhibiting great potential in biomedical applications.Herein,the recent progress of HCR-based DNA nanomaterials for biosensing,bioimaging and therapeutics are summarized.Representative works are exemplified to demonstrate how HCR-based DNA nanomaterials are designed and constructed.The challenges and prospects of the development of HCR-based DNA nanomaterials are discussed.We envision that rationally designing HCR-based DNA nanomaterials will facilitate the development of biomedical applications.
文摘构建一种基于杂交链式反应(hybridization chain reaction,HCR)扩增的适配体磁珠荧光传感器。巧妙设计序列HP和发卡序列H1、H2,其中HP是由适配体序列与触发序列结合而成的,并且序列互补形成稳定的二级结构。然后采用戊二醇反应和亲和素-生物素反应进行适配体功能化磁珠的制备。将阪崎肠杆菌与适配体磁珠一起孵育,HP中的适配体序列识别靶标,引起HP构象变化,露出触发序列,通过HCR触发H1和H2的链状组装,产生长双链DNA。荧光指示剂SYBR Green I以插层和小槽结合的方式与HCR产物的长双链结合。最后加入氧化石墨烯(graphene oxide,GO)后,游离的H1、H2和SYBR Green I将通过π-π堆积紧密吸附在GO表面,荧光信号被猝灭。HCR产物不能被吸附在GO表面,因此与HCR产物结合的SYBR Green I发出依赖于靶浓度的强荧光信号,从而实现阪崎肠杆菌的定量检测。本方法在纯培养条件下的检出限为2CFU/mL,对奶粉的检出限为8CFU/g,对奶粉样品的检测结果与传统微生物培养法具有良好的一致性。该方法具有无需DNA提取,快速、稳定性高、高特异性和高灵敏度等优点,因此为阪崎肠杆菌的现场快速检测提供了一种很有潜力的方法。
基金supported by the National Natural Science Foundation of China(22122403,22274042,22234003)the Natural Science Foundation of Hunan Province(2021JJ10012)。
文摘Accurate signal amplification in living cells is highly important in biomedical research and medical diagnostics.Benefiting from its enzyme-free,efficient isothermal signal amplification ability,hybridization chain reaction(HCR)plays an important role in intracellular signal amplification;however,HCR fails the accurate signal amplification in the situation when the properties of some biological targets and analogues are too similar.Particularly,their signal amplification accuracy for mature mi RNAs is unsatisfactory due to the signal interference of precursor micro RNAs(abbreviated as pre-mi RNAs),which also contain the sequence of mature mi RNAs.Herein,we develop the first example of size-selective hybridization chain reaction probe for accurate signal amplification,which achieved accurate and sensitive biosensing of mature mi RNAs in living cancer cells.Our probe,termed as q Tcage,consists of a DNA nanocage for size-selective responsive to mature mi RNAs,as well as a quadrivalent tetrahedral DNA structure for HCR signal amplification.Benefiting from the size-selectivity of DNA nanocage,shorter mature mi RNAs(19–23 nt)rather than longer pre-mi RNAs(60–70 nt)could enter the cavity to release triggers strand,which activates HCR reaction for fluorescence signal recovery.The probe efficiently reduces signal interference of pre-mi RNAs and improves the imaging sensitivity for intracellular mature mi RNAs,which was successfully applied for mature mi RNAs imaging during drug treatment.Overall,this strategy provides the hybridization chain reaction with the feature of size-selective ability,which holds promise for further accurate signal amplification in biological processes study and clinical diagnostics.
基金supported by the National Natural Science Foundation of China(22304062)the Zhejiang Provincial Natural Science Foundation of China(LTGY24B050002)+2 种基金the Program for Science and Technology of Jiaxing(2023AY40028)the Baiqing Foundation of Jiaxing University(CD70621010)Springer Nature or its licensor(e.g.a society or other partner)holds exclusive rights to this article under a publishing agreement with the author(s)or other rightsholder(s)author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law。
文摘In this work,we proposed a ratiometric silver nanoclusters(AgNCs)fluorescent assay by designing a bifunctional-blockeraided hybridization chain reaction(HCR).Hairpin probe 1(HP1)containing two special DNA fragments(5′-CAC CGC T-3′and 5′-ATT TGC CTT TTG GGG ACG GATA-3′)at two terminals creates a red-emitting AgNC nucleation sequence(rNS,5′-CAC CGC TAT TTG CCT TTT GGG GAC GGATA-3′).We found that the presence of a toehold fragment(5′-TGCCC-3′)in HP1 could silence the rNS.Upon the addition of a target nucleic acid,HCR of HP1 and hairpin probe 2(HP2)could be initiated,resulting in the formation of long chain of DNA duplexes with multibranched rNS.As the toehold fragment in HP1participated in generating duplexes,a strong emission of rNS-templated AgNCs was observed at 670 nm.More significantly,a bifunctional blocker was introduced not only to reduce the background red-emitting fluorescence but also to play as an internal green-emitting AgNCs nucleation sequence.On the one hand,the blocker could increase the signal-to-noise-ratio of the constructed biosensor,and on the other hand,the blocker also helped to prepare ratiometric HCR-AgNCs assay with self-calibrating ability to strengthen its reproducibility.Compared with the traditional HCR-AgNCs sensors,the developed ratiometric assay based on the bifunctional-blocker-aided HCR has higher reliability,which is important for the fabrication of biosensors in various fields for practical biosensing applications.
基金Supported by Research Fund for the Doctoral Program of Higher Education,China(Grant No.20131333110008)
文摘Although it is common to eliminate the singularity of parallel mechanism by adding the branched chain with actuation redundancy, there is no theory and method for the configuration synthesis of the branched chain with actuation redundancy in parallel mechanism. Branched chains with actuation redundancy are synthesized for eliminating interior singularity of 3-translational and 1-rotational(3T1R) parallel mechanisms. Guided by the discriminance method of hybrid screw group according to Grassmann line geometry, all the possibilities are listed for the occurrence of interior singularities in 3T1R parallel mechanism. Based on the linear relevance of screw system and the principles of eliminating parallel mechanism singularity with actuation redundancy, different types of branched chains with actuation redundancy are synthesized systematically to indicate the layout and the number of the branched chainsinterior with actuation redundancy. A general method is proposed for the configuration synthesis of the branched chains with actuation redundancy of the redundant parallel mechanism, and it builds a solid foundation for the subsequent performance optimization of the redundant actuation parallel mechanism.