This paper is a sequel to Kageyama et al. [1], in which a Markov-type hybrid process has been constructed and the corresponding discounted total reward has been characterized by the recursive equation. The objective o...This paper is a sequel to Kageyama et al. [1], in which a Markov-type hybrid process has been constructed and the corresponding discounted total reward has been characterized by the recursive equation. The objective of this paper is to formulate a hybrid decision process and to give the existence and characterization of optimal policies.展开更多
研究随机环境下车流径路的选择问题,首先给出路网车流径路方案可靠性的定义,并在此基础上建立随机环境下车流径路选择问题的随机相关机会多目标规划模型。模型考虑了车流具有不同权重的情况,目标为极大化车流径路方案的可靠性及极小化...研究随机环境下车流径路的选择问题,首先给出路网车流径路方案可靠性的定义,并在此基础上建立随机环境下车流径路选择问题的随机相关机会多目标规划模型。模型考虑了车流具有不同权重的情况,目标为极大化车流径路方案的可靠性及极小化期望总费用。用C++语言编写K短路算法,并在Visual Studio 6.0上基于该算法开发了软件,用于计算网络上任意两点之间的K短路。以该软件计算出的K短路作为节点间的可选径路集,提出一种基于随机模拟的混合遗传算法。算例表明,在不同交叉和变异概率的条件下算法均可在给定进化代数内收敛至相同的最优解,有较强的适应性。展开更多
文摘This paper is a sequel to Kageyama et al. [1], in which a Markov-type hybrid process has been constructed and the corresponding discounted total reward has been characterized by the recursive equation. The objective of this paper is to formulate a hybrid decision process and to give the existence and characterization of optimal policies.
文摘研究随机环境下车流径路的选择问题,首先给出路网车流径路方案可靠性的定义,并在此基础上建立随机环境下车流径路选择问题的随机相关机会多目标规划模型。模型考虑了车流具有不同权重的情况,目标为极大化车流径路方案的可靠性及极小化期望总费用。用C++语言编写K短路算法,并在Visual Studio 6.0上基于该算法开发了软件,用于计算网络上任意两点之间的K短路。以该软件计算出的K短路作为节点间的可选径路集,提出一种基于随机模拟的混合遗传算法。算例表明,在不同交叉和变异概率的条件下算法均可在给定进化代数内收敛至相同的最优解,有较强的适应性。