To improve the wear performance of CoCrAlYTa coating,part of the carbon nanotubes(CNTs)chemically reacted with Ta to form reinforcement phase(TaC),while the other CNTs were retained as lubrication phase.Subsequently,t...To improve the wear performance of CoCrAlYTa coating,part of the carbon nanotubes(CNTs)chemically reacted with Ta to form reinforcement phase(TaC),while the other CNTs were retained as lubrication phase.Subsequently,the CoCrAlYTa-xCNTs(x=0,1,2,and 4;wt%)composite coatings were prepared by laserinduction hybrid cladding(LIHC),and the microstructure and wear resistance of coatings were systematically analyzed.Results show that the coatings are mainly composed of TaC,y-(Co,Cr)andβ-(Co,Cr)Al.As the CNTs content increases from 0 wt%to 4 wt%,the volume fraction of TaC increases from 13.11 vol%to 16.12 vol%.Meanwhile,the nano-hardness ofγ-(Co,Cr)andβ-(Co,Cr)Al are improved from 7.49 and 9.72 to 9.36 and 11.19 GPa,respectively.As a result,the microhardness of coating increases from HV536.25 to HV 738.16,the wear rate decreases from32.4×10^(-3)to 6.1×10^(-3)mg·m^(-1),and the average friction coefficient decreases from 0.55 to 0.44.The good wear performance of the coating is attributed to the formation of TaC and the existence of remained CNTs lubricant film.展开更多
To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser...To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52005217 and 51261026)the Basic and Applied Basic Research Fund Project of Guangdong Province in China(Nos.2023A1515012684,2021A1515010523 and 2020A1515110020)+4 种基金the University Research Platform and Research Projects of Guangdong Education Department(No.2022ZDZX3003)the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials(No.2022GXYSOF18)Guanxi Key Laboratory of Information Materials(No.221012-K)the Open Project Program of Wuhan National Laboratory for Optoelectronics(No.2021WNLOKF010)the Fundamental Research Funds for the Central Universities(No.21622110)。
文摘To improve the wear performance of CoCrAlYTa coating,part of the carbon nanotubes(CNTs)chemically reacted with Ta to form reinforcement phase(TaC),while the other CNTs were retained as lubrication phase.Subsequently,the CoCrAlYTa-xCNTs(x=0,1,2,and 4;wt%)composite coatings were prepared by laserinduction hybrid cladding(LIHC),and the microstructure and wear resistance of coatings were systematically analyzed.Results show that the coatings are mainly composed of TaC,y-(Co,Cr)andβ-(Co,Cr)Al.As the CNTs content increases from 0 wt%to 4 wt%,the volume fraction of TaC increases from 13.11 vol%to 16.12 vol%.Meanwhile,the nano-hardness ofγ-(Co,Cr)andβ-(Co,Cr)Al are improved from 7.49 and 9.72 to 9.36 and 11.19 GPa,respectively.As a result,the microhardness of coating increases from HV536.25 to HV 738.16,the wear rate decreases from32.4×10^(-3)to 6.1×10^(-3)mg·m^(-1),and the average friction coefficient decreases from 0.55 to 0.44.The good wear performance of the coating is attributed to the formation of TaC and the existence of remained CNTs lubricant film.
基金Projects(51471084,61475117)supported by the National Natural Science Foundation of ChinaProject(13ZCZDGX01109)supported by Tianjin Municipal Science and Technology Commission of ChinaProject(20122BBE500031)supported by the Key Technology Project of Jiangxi Province in China
文摘To select the proper composition and obtain an overall material?microstructure?property relationship for Cu?Fe alloy, theeffect of Fe content on microstructure and properties of Cu?Fe-based composite coatings by laser induction hybrid rapid claddingwas investigated. Microstructure characterization of the composite coatings was tested utilizing SEM, XRD and EDS. Microhardnessmeasurement was executed to evaluate the mechanical properties of the composite coatings. The results show that for low Fe content,the composite coating presents a feature that Fe-rich equiaxed dendrites are embedded in the Cu-rich matrix. With increasing Fecontent, the Fe-rich particles are dispersed in the Cu-rich matrix. With further increasing Fe content, large amounts of Cu-richparticles are homogeneously dispersed in the interdendrite of the Fe-rich matrix. Correspondingly, the average microhardness of thecomposite coatings increases gradually with the increase of Fe content and the microhardness of Cu14.5Fe83Si2C0.5 coating is muchtwice higher than that of the substrate.