The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention ...Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.展开更多
This paper considers the Bayesian and expected Bayesian(E-Bayesian) estimations of the parameter and reliability function for competing risk model from Gompertz distribution under Type-I progressively hybrid censori...This paper considers the Bayesian and expected Bayesian(E-Bayesian) estimations of the parameter and reliability function for competing risk model from Gompertz distribution under Type-I progressively hybrid censoring scheme(PHCS). The estimations are obtained based on Gamma conjugate prior for the parameter under squared error(SE) and Linex loss functions. The simulation results are provided for the comparison purpose and one data set is analyzed.展开更多
There exists a great deal of periodic non-stationary processes in natural,social and eco- nomical phenomenon.It is very important to realize the dynamic analysis and real-time forecast within a period.In this letter,a...There exists a great deal of periodic non-stationary processes in natural,social and eco- nomical phenomenon.It is very important to realize the dynamic analysis and real-time forecast within a period.In this letter,a wavelet-Kalman hybrid estimation and forecasting algorithm based on step-by-step filtering with the real-time and recursion property is put forward.It combines the advantages of Kalman filter and wavelet transform.Utilizing the information provided by multi- sensor effectively,this algorithm can realize not only real-time tracking and dynamic multi-step fore- casting within a period,but also the dynamic forecasting between periods,and it has a great value to the system decision-making.Simulation results show that this algorithm is valuable.展开更多
The increasing penetration of renewable energy resources with highly fluctuating outputs has placed increasing concern on the accuracy and timeliness of electric power system state estimation(SE).Meanwhile,we note tha...The increasing penetration of renewable energy resources with highly fluctuating outputs has placed increasing concern on the accuracy and timeliness of electric power system state estimation(SE).Meanwhile,we note that only a fraction of system states fluctuate at the millisecond level and require to be updated.As such,refreshing only those states with significant variation would enhance the computational efficiency of SE and make fast-continuous update of states possible.However,this is difficult to achieve with conventional SE methods,which generally refresh states of the entire system every 4–5 s.In this context,we propose a local hybrid linear SE framework using stream processing,in which synchronized measurements received from phasor measurement units(PMUs),and trigger/timingmode measurements received from remote terminal units(RTUs)are used to update the associated local states.Moreover,the measurement update process efficiency and timeliness are enhanced by proposing a trigger measurement-based fast dynamic partitioning algorithm for determining the areas of the system with states requiring recalculation.In particular,non-iterative hybrid linear formulations with both RTUs and PMUs are employed to solve the local SE problem.The timeliness,accuracy,and computational efficiency of the proposed method are demonstrated by extensive simulations based on IEEE 118-,300-,and 2383-bus systems.展开更多
In order to meet the higher accuracy requirement of trajectory prediction for Unmanned Aircraft System(UAS)in Unmanned Aircraft System Traffic Management(UTM),an Intent Based Trajectory Prediction and Smooth Based on ...In order to meet the higher accuracy requirement of trajectory prediction for Unmanned Aircraft System(UAS)in Unmanned Aircraft System Traffic Management(UTM),an Intent Based Trajectory Prediction and Smooth Based on Constrained State-dependent-transition Hybrid Estimation(CSDTHE-IBTPS)algorithm is proposed.Firstly,an intent inference method of UAS is constructed based on the information of ADS-B and geofence system.Moreover,a geofence layering algorithm is proposed.Secondly,the Flight Mode Change Points(FMCP)are used to define the relevant mode transition parameters and design the guard conditions,so as to generate the mode transition probability matrix and establish the continuous state-dependent-transition model.After that,the constrained Kalman filter(CKF)is applied to improve State-dependent-transition Hybrid Estimation(SDTHE)algorithm by applying equality constraint to the velocity of UAS in the straight phase and turning phase,respectively,and thus the constrained state-dependent-transition hybrid estimation(CSDTHE)algorithm is constructed.Finally,the results of intent inference and hybrid estimation are used to make trajectory prediction.Furthermore,each flight segment of trajectory is smoothed respectively by Rauch-Tung-Striebel(RTS)backward smooth method using the proposed CSDTHE-RTS algorithm,so as to obtain more accurate trajectory prediction results.The simulation shows that the proposed algorithm can reduce the errors of trajectory prediction and the time delay of intent inference.展开更多
This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured ...This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.展开更多
In this paper, we prove the convergence of the nodal expansion method, a new numerical method for partial differential equations and provide the error estimates of approximation solution.
Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of or...Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^(1+min){α,1}) is established for both the displacement approximation in H^1-norm and the stress approximation in L^2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.展开更多
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金Supported by National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2013BAG14B01)
文摘Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.
基金supported by the National Natural Science Foundation of China(7117116471401134+1 种基金71571144)the Natural Science Basic Research Program of Shaanxi Province(2015JM1003)
文摘This paper considers the Bayesian and expected Bayesian(E-Bayesian) estimations of the parameter and reliability function for competing risk model from Gompertz distribution under Type-I progressively hybrid censoring scheme(PHCS). The estimations are obtained based on Gamma conjugate prior for the parameter under squared error(SE) and Linex loss functions. The simulation results are provided for the comparison purpose and one data set is analyzed.
基金Supported by the National Natural Science Foundation of China (No.60434020,60572051)International Cooperative Project Foundation (0446650006)Ministry of Education Science Foundation (205092).
文摘There exists a great deal of periodic non-stationary processes in natural,social and eco- nomical phenomenon.It is very important to realize the dynamic analysis and real-time forecast within a period.In this letter,a wavelet-Kalman hybrid estimation and forecasting algorithm based on step-by-step filtering with the real-time and recursion property is put forward.It combines the advantages of Kalman filter and wavelet transform.Utilizing the information provided by multi- sensor effectively,this algorithm can realize not only real-time tracking and dynamic multi-step fore- casting within a period,but also the dynamic forecasting between periods,and it has a great value to the system decision-making.Simulation results show that this algorithm is valuable.
基金supported by the National Key Research and Development Program of China under Grant 2018YFB0904500。
文摘The increasing penetration of renewable energy resources with highly fluctuating outputs has placed increasing concern on the accuracy and timeliness of electric power system state estimation(SE).Meanwhile,we note that only a fraction of system states fluctuate at the millisecond level and require to be updated.As such,refreshing only those states with significant variation would enhance the computational efficiency of SE and make fast-continuous update of states possible.However,this is difficult to achieve with conventional SE methods,which generally refresh states of the entire system every 4–5 s.In this context,we propose a local hybrid linear SE framework using stream processing,in which synchronized measurements received from phasor measurement units(PMUs),and trigger/timingmode measurements received from remote terminal units(RTUs)are used to update the associated local states.Moreover,the measurement update process efficiency and timeliness are enhanced by proposing a trigger measurement-based fast dynamic partitioning algorithm for determining the areas of the system with states requiring recalculation.In particular,non-iterative hybrid linear formulations with both RTUs and PMUs are employed to solve the local SE problem.The timeliness,accuracy,and computational efficiency of the proposed method are demonstrated by extensive simulations based on IEEE 118-,300-,and 2383-bus systems.
基金This work was financially supported by the Major Program of National Natural Science Foundation of Chinathe National Natural Science Foundation of China[Grant No.61703427].
文摘In order to meet the higher accuracy requirement of trajectory prediction for Unmanned Aircraft System(UAS)in Unmanned Aircraft System Traffic Management(UTM),an Intent Based Trajectory Prediction and Smooth Based on Constrained State-dependent-transition Hybrid Estimation(CSDTHE-IBTPS)algorithm is proposed.Firstly,an intent inference method of UAS is constructed based on the information of ADS-B and geofence system.Moreover,a geofence layering algorithm is proposed.Secondly,the Flight Mode Change Points(FMCP)are used to define the relevant mode transition parameters and design the guard conditions,so as to generate the mode transition probability matrix and establish the continuous state-dependent-transition model.After that,the constrained Kalman filter(CKF)is applied to improve State-dependent-transition Hybrid Estimation(SDTHE)algorithm by applying equality constraint to the velocity of UAS in the straight phase and turning phase,respectively,and thus the constrained state-dependent-transition hybrid estimation(CSDTHE)algorithm is constructed.Finally,the results of intent inference and hybrid estimation are used to make trajectory prediction.Furthermore,each flight segment of trajectory is smoothed respectively by Rauch-Tung-Striebel(RTS)backward smooth method using the proposed CSDTHE-RTS algorithm,so as to obtain more accurate trajectory prediction results.The simulation shows that the proposed algorithm can reduce the errors of trajectory prediction and the time delay of intent inference.
文摘This paper presents an internal model approach for modeling and diagnostic functionality design for nonlinear systems operating subject to single- and multiple-faults. We therefore provide the framework of structured augmented state models. Fault characteristics are considered to be generated by dynamical exosystems that are switched via equality constraints to overcome the augmented state observability limiting the number of diagnosable faults. Based on the proposed model, the fault diagnosis problem is specified as an optimal hybrid augmented state estimation problem. Sub-optimal solutions are motivated and exemplified for the fault diagnosis of the well-known three-tank benchmark. As the considered class of fault diagnosis problems is large, the suggested approach is not only of theoretical interest but also of high practical relevance.
基金This project is supported by the National Science Foundation of China
文摘In this paper, we prove the convergence of the nodal expansion method, a new numerical method for partial differential equations and provide the error estimates of approximation solution.
基金supported by National Natural Science Foundation of China (Grant No. 11171239)Major Research Plan of National Natural Science Foundation of China (Grant No. 91430105)
文摘Superconvergence and recovery type a posteriori error estimators are analyzed for Pian and Sumihara's 4-node hybrid stress quadrilateral finite element method for linear elasticity problems. Superconvergence of order O(h^(1+min){α,1}) is established for both the displacement approximation in H^1-norm and the stress approximation in L^2-norm under a mesh assumption, where α > 0 is a parameter characterizing the distortion of meshes from parallelograms to quadrilaterals. Recovery type approximations for the displacement gradients and the stress tensor are constructed, and a posteriori error estimators based on the recovered quantities are shown to be asymptotically exact. Numerical experiments confirm the theoretical results.