Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution ...Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers' conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20℃ to 240 ℃is less than 1.96%.展开更多
Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of th...Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of the prepared composites were studied.The results indicated that hybrid fibers reinforced composites possessed the advantages of both CF and BF.When resin content was 35% by volume fraction,the comprehensive mechanical performance of BF/CF reinforced phenolic resin composites reached the optimal values with the warp and weft direction tensile strength,compressive strength and interlayer shear strength being 252 MPa and 487 MPa,105 MPa and 129 MPa,21 MPa and 20 MPa,respectively.The scanning electron microscope(SEM) observations showed that the BF/CF hybrid fibers reinforced composites had better interfacial adhesion.展开更多
Combining different types of fibers inside a concrete mixture was revealed to improve the strength properties of cementitious matrices by monitoring crack initiation and propagation.The contribution of hybrid fibers n...Combining different types of fibers inside a concrete mixture was revealed to improve the strength properties of cementitious matrices by monitoring crack initiation and propagation.The contribution of hybrid fibers needs to be thoroughly investigated,considering various parameters such as fibers type and content.The present study aims to carry out some mechanical and microstructural characteristics of Waste Ceramic Optimal Concrete(WOC)reinforced by hybrid fibers.Reinforcement materials consist of three different fiber types:hook-ended steel fiber(HK),crimped steel fiber(CR)and polyvinyl alcohol(PVA)fibers and the effect of their addition on the waste ceramic composites’mechanical behaviour.Furthermore,a microstructural analysis was carried out to understand the waste ceramic matrix composition and its bonding to hybrid fibers.Results showed that the addition of hybrid fibers improved the strength characteristics of the ceramic waste composites.For instance,the existence of PVA-CR increased the tensile and flexural strength of the waste ceramic composite by 85.44%and 70.37%,respectively,with respect to the control sample(WOC).As well as hybrid fiber exhibits improved morphological properties as a result of increased pore filling with dense and compact structure,as well as increased C-H crystals and denser structure in pastes as a result of the incorporation of hybrid fibers into the concrete mix.The present experimental research shows the choice of using steel fiber with PVA as a reinforcement material.The idea of adding hybrid fiber is to prepare the economic,environmental,and technological concrete.Moreover,it offers a possibility for improving concrete’s durability,which is vital.Finally,it was concluded that steel fiber is more durable,and stiffer and provides adequate first crack strength and ultimate strength.In contrast,the PVA fiber is relatively flexible and improves the post-crack zone’s toughness and strain capacity.展开更多
The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has f...The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has full of vigor and tremendous potentiality as promising linear electrode for wire-shaped SCs,simultaneously achieving its facile fabrication process and satisfactory electrochemical performance still remains challenging to date.Herein,two novel types of graphene hybrid fibers,namely ferroferric oxide dots(FODs)@GF and N-doped carbon polyhedrons(NCPs)@GF,have been proposed via a simple and efficient chemical reduction-induced fabrication.Synergistically coupling the electroactive units(FODs and NCPs)with conductive graphene nanosheets endows the fiber-shaped architecture with boosted electrochemical activity,high flexibility and structural integrity.The resultant FODs@GF and NCPs@GF hybrid fibers as linear electrodes both exhibit excellent electrochemical behaviors,including large volumetric specific capacitance,good rate capability,as well as favorable electrochemical kinetics in ionic liquid electrolyte.Based on such two linear electrodes and ionogel electrolyte,a highperformance wire-shaped SC is effectively assembled with ultrahigh volumetric energy density(26.9 mW·cm^(-3)),volumetric power density(4900 mW·cm^(-3))and strong durability over 10,000 cycles under straight/bending states.Furthermore,the assembled wire-shaped SC with excellent flexibility and weavability acts as efficient energy storage device for the application in wearable electronics.展开更多
Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at ...Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF_(s) with excellent thermal and mechanical properties. Here, polyamide 6(PA6) based TRF_(s) with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF(TRF_(sc)) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials(ssPCM),dendritic silica@polyethylene glycol(SiO_(2)@PEG). With the aid of the sheath structure, the filling content of SiO_(2)@PEG can reach 30 %, so that the enthalpy of the TRF_(s) can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93℃. In addition, the mechanical strength of the prepared TRF_(sc) reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc.展开更多
Partially replacing polyvinyl-alcohol(PVA)fibers with polypropylene(PP)fibers in strain-hardening cementitious composites(fiber hybridization)modify certain mechanical properties of these materials.The hybridization b...Partially replacing polyvinyl-alcohol(PVA)fibers with polypropylene(PP)fibers in strain-hardening cementitious composites(fiber hybridization)modify certain mechanical properties of these materials.The hybridization based on the introduction of low-modulus hydrophobic polypropylene fibers improves the ductility and the strain-hardening behavior of the cementitious composites containing polyvinyl-alcohol fibers of different types(PVA-SHCC).Pull-out tests indicate that adding PP fibers increases the energy capacity of the hybrid composite with respect to the material containing only PVA fibers under tensile loading,and PP-fiber geometry(i.e.,section shape and length)is a key factor in enhancing the strain capacity.展开更多
In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in har...In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.展开更多
In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios ...In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.展开更多
In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.F...In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance.展开更多
To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as com...To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C.展开更多
The aim of this study is to improve the bond performance of basalt fiber reinforced polymer(BFRP)bars and recycled aggregate concrete(RAC)after being exposed to high temperatures.The bond behavior(failure modes,bond s...The aim of this study is to improve the bond performance of basalt fiber reinforced polymer(BFRP)bars and recycled aggregate concrete(RAC)after being exposed to high temperatures.The bond behavior(failure modes,bond strength,bond stress-slip curves)between BFRP bars and hybrid fiber recycled aggregate concrete(HFRAC)after being exposed to temperatures ranging from 20℃up to 500℃was studied by using pull-out tests.The effect of high temperatures on mechanical properties of concrete(compressive strength,splitting tensile strength)and tensile strength of BFRP bars was also investigated.The bond strength decreased as the temperature increased and the drop of bond strength between RAC and BFRP bar was larger than that between HFRAC and BFRP bar.As the temperature rises,the key factor affecting the bond strength was gradually transformed from concrete strength to BFRP bar strength.The relationship between bond stress and slip in the dimensionless bond stress-slip ascending section was established,which was in good agreement with the experimental results.展开更多
To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical pr...To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly.展开更多
The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-M...The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable.展开更多
Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and...Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.展开更多
In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress...In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress levels was simulated using the two-parameter Weibull distribution. Furthermore, both single- logarithmic and double-logarithmic regressive equations of various reliabilities were derived. It is evident that LHFRC gets the advantage of longer fatigue life over common concrete.展开更多
In order to reveal the flexural behavior of hybrid fiber reinforced high-performance concrete deep beam, 16 high-performance concrete deep beams of different fiber volume content have been tested according to the stat...In order to reveal the flexural behavior of hybrid fiber reinforced high-performance concrete deep beam, 16 high-performance concrete deep beams of different fiber volume content have been tested according to the state standards and testing methods. The effects of hybrid fiber on the yield moment and bending bearing capacity of the cross-section have been analyzed, the calculation method for the bending capacity' is discussed and the propositional formula are provided as well. Results shoxv that the flexural properties increased obviously when add ≤1.0% of volume content steel fibers and ≤0.11% of volume content polypropylene fibers in to deep beam. The results are useful to the further amendments of fiber reinforced concrete structure technical regulation (CECS 38:2004).展开更多
Engineered Cementitious Composites(ECC)is a class of high-performance fiber reinforced composites with ultra-ductility designed based on micromechanics,and it has been developed for increasing application in the const...Engineered Cementitious Composites(ECC)is a class of high-performance fiber reinforced composites with ultra-ductility designed based on micromechanics,and it has been developed for increasing application in the construction industry during recent decades.The properties of ECC at room temperature have been tested and studied in depth,however,few studies focus on its performance after high temperature that is one of the worst conditions to ECC.To investigate the change tendency and mechanism for the high temperature flexural properties of hybrid fiber reinforced ECC and the feasibility of calcium carbonate whisker to reduce the cost of ECC materials,polyvinyl alcohol fiber(PVA)reinforced strain hardening cementitious composites(PVA-ECC),steel fiber+PVA fiber reinforced ECC(defined as HyFRECC-A)and steel fiber+PVA fiber+CaCO3 whisker reinforced ECC(defined as HyFRECC-B)subject to room temperature and 200℃,400℃,600℃,800℃elevated temperature exposure were experimentally compared.The results indicate that equally replacing PVA fibers by steel fibers degraded the flexural hardening ability of PVA-ECC at room temperature,while the addition of appropriate amount of CaCO3 whisker improved the flexural strength,toughness and flexural hardening behavior.The elevated temperature posed a significant effect on the flexural strength and toughness of the three types of ECCs.Flexural deflection hardening behavior of the three types of ECCs was eliminated after high temperature exposure.Flexural strength and toughness of PVA-ECC presented an exponential decay along with the increase of temperature.The addition of steel fiber slowed down the decay rate.Although the use of CaCO3 whisker increased the post-temperature flexural strength and toughness of HyFRECC-B,the decay rate was not further decreased.展开更多
In order to improve fiber quality of green cotton,a wide hybrid was used between a green fiber cotton and Sea Island cotton.The results show that the hybrid F1 plants were stable,but F2
A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation be...A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation between the resonant wavelengths of the LPFG and MMFC since the resonant wavelengths of the LPFG and MMFC will shift in opposite directions when the surrounding RI changes. Experimental results show that the sensor possesses an enhanced sensitivity of 526.92nm/RIU in the RI range of 1.387-1.394 RIU. The response to the temperature is also discussed.展开更多
Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to s...Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to synthetic fibers.Keeping in view,this current research conducted mainly focuses on the static properties of hybridized(sisal/coir),sisal and coir fiber-reinforced concrete.Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10,20 and 30 mm and various natural fiber concentrations of 0.5%,1.0%,and 1.5%by mass of cement,to investigate the static properties of sisal fiber reinforced concrete(SFRC),coir fiber reinforced concrete(CFRC)and hybrid fiber reinforced concrete(HFRC).The results indicate that HFRC has increased the compressive strength up to 35.98%with the length of 20 mm and with 0.5%concentration,while the CFRC and SFRC with the length of 10 mm and with 1%concentration have increased the compressive strength up to 33.94%and 24.86%,respectively.On another hand,the split tensile strength was increased by HFRC with the length of 20 mm and with 1%concentration,CFRC with the length of 10 mm and with 1.5%concentration,and SFRC with the length of 30 mm and with 1%concentration have increased up to 25.48%,24.56%and 11.80%,respectively,while the HFRC with the length of 20 mm and with 0.5%concentration has increased the compressive strength of concrete but has decreased the split tensile strength up to 2.28%compared to PC.Overall,using the HFRC with the length of 20 mm and with 1%concentration provide the maximum output in terms of split tensile strength.展开更多
基金Funded by the Natural Science Foundation of Hubei Province (No.2007ABA028)
文摘Vinylester (bismethacryloxy derivative with glass-carbon hybrid fibers (CF-GF) weight fraction of a bisphenol-A type EP resin, VE) composites of 50%, were prepared by the compress molding method. The distribution of carbon fiber in the hybrids was observed by stereomicroscope. The electrical resistance behavior of the composites filled with different carbon fiber (CF) weight contents (0.5% to 20%) was studied. The experimental results show that the electrical resistance behaviors of CF-GF/VE composites are different with those of CF/VE composites because carbon fibers' conducting networks are broken by the glass fibers in the CF-GF/VE composites. The carbon fibers distribute uniformly in the networks of glass fibers (GF) like single silk and form the semi-continuous conducting networks. Composite filled with GF-CF hybrid has a higher percolation threshold than that filled with pure CF. At that time, the resistivity of CF-GF/VE composites varies little with the temperature increasing. The temperature coefficient of resistivity in GF-CF/VE composite is less than 317 ppm and the variation of the resistivity after ten thermal cycles from 20℃ to 240 ℃is less than 1.96%.
文摘Phenolic-resin composites reinforced with carbon fiber(CF) and basalt fiber(BF) interlayer hybrid fibers plain fabric were fabricated.The tensile strength,compressive strength and interlaminar shear strength of the prepared composites were studied.The results indicated that hybrid fibers reinforced composites possessed the advantages of both CF and BF.When resin content was 35% by volume fraction,the comprehensive mechanical performance of BF/CF reinforced phenolic resin composites reached the optimal values with the warp and weft direction tensile strength,compressive strength and interlayer shear strength being 252 MPa and 487 MPa,105 MPa and 129 MPa,21 MPa and 20 MPa,respectively.The scanning electron microscope(SEM) observations showed that the BF/CF hybrid fibers reinforced composites had better interfacial adhesion.
文摘Combining different types of fibers inside a concrete mixture was revealed to improve the strength properties of cementitious matrices by monitoring crack initiation and propagation.The contribution of hybrid fibers needs to be thoroughly investigated,considering various parameters such as fibers type and content.The present study aims to carry out some mechanical and microstructural characteristics of Waste Ceramic Optimal Concrete(WOC)reinforced by hybrid fibers.Reinforcement materials consist of three different fiber types:hook-ended steel fiber(HK),crimped steel fiber(CR)and polyvinyl alcohol(PVA)fibers and the effect of their addition on the waste ceramic composites’mechanical behaviour.Furthermore,a microstructural analysis was carried out to understand the waste ceramic matrix composition and its bonding to hybrid fibers.Results showed that the addition of hybrid fibers improved the strength characteristics of the ceramic waste composites.For instance,the existence of PVA-CR increased the tensile and flexural strength of the waste ceramic composite by 85.44%and 70.37%,respectively,with respect to the control sample(WOC).As well as hybrid fiber exhibits improved morphological properties as a result of increased pore filling with dense and compact structure,as well as increased C-H crystals and denser structure in pastes as a result of the incorporation of hybrid fibers into the concrete mix.The present experimental research shows the choice of using steel fiber with PVA as a reinforcement material.The idea of adding hybrid fiber is to prepare the economic,environmental,and technological concrete.Moreover,it offers a possibility for improving concrete’s durability,which is vital.Finally,it was concluded that steel fiber is more durable,and stiffer and provides adequate first crack strength and ultimate strength.In contrast,the PVA fiber is relatively flexible and improves the post-crack zone’s toughness and strain capacity.
基金the National Natural Science Foundation of China (52002157,51873083)the Natural Science Foundation of Jiangsu Province(BK20190976)+1 种基金the University Natural Science Research Project of Jiangsu Province (19KJB430017)the Opening Project of State Key Laboratory of Polymer Materials Engineering (Sichuan University)(sklpme2018-4-27)
文摘The emerging one-dimensional wire-shaped supercapacitors(SCs)with structural advantages of low mass/volume structural advantages hold great interests in wearable electronic engineering.Although graphene fiber(GF)has full of vigor and tremendous potentiality as promising linear electrode for wire-shaped SCs,simultaneously achieving its facile fabrication process and satisfactory electrochemical performance still remains challenging to date.Herein,two novel types of graphene hybrid fibers,namely ferroferric oxide dots(FODs)@GF and N-doped carbon polyhedrons(NCPs)@GF,have been proposed via a simple and efficient chemical reduction-induced fabrication.Synergistically coupling the electroactive units(FODs and NCPs)with conductive graphene nanosheets endows the fiber-shaped architecture with boosted electrochemical activity,high flexibility and structural integrity.The resultant FODs@GF and NCPs@GF hybrid fibers as linear electrodes both exhibit excellent electrochemical behaviors,including large volumetric specific capacitance,good rate capability,as well as favorable electrochemical kinetics in ionic liquid electrolyte.Based on such two linear electrodes and ionogel electrolyte,a highperformance wire-shaped SC is effectively assembled with ultrahigh volumetric energy density(26.9 mW·cm^(-3)),volumetric power density(4900 mW·cm^(-3))and strong durability over 10,000 cycles under straight/bending states.Furthermore,the assembled wire-shaped SC with excellent flexibility and weavability acts as efficient energy storage device for the application in wearable electronics.
基金financially supported by the National Natural Science Foundation of China (52073047)the Science and Technology Commission of Shanghai Municipality (20JC1414900)+1 种基金the Program of Shanghai Technology Research Leader (20XD1433700)the INTERNATIONAL COOPERATION Fund of the Science and Technology Commission of Shanghai Municipality (20520740800)。
文摘Temperature regulating fibers(TRF_(s)) with high enthalpy and high form stability are the key factors for thermal management. However, the enthalpies of most TRFsare not high, and the preparation methods are still at the laboratory scale. It remains a great challenge to use industrial spinning equipment to achieve continuous processing of TRF_(s) with excellent thermal and mechanical properties. Here, polyamide 6(PA6) based TRF_(s) with a sheath-core structure were prepared by bicomponent melt-spinning. The sheath-core TRF(TRF_(sc)) are composed of PA6 as sheath and functional PA6 as core, which are filled with the shape stable phase change materials(ssPCM),dendritic silica@polyethylene glycol(SiO_(2)@PEG). With the aid of the sheath structure, the filling content of SiO_(2)@PEG can reach 30 %, so that the enthalpy of the TRF_(s) can be as high as 21.3 J/g. The ultra-high enthalpy guarantees the temperature regulation ability during the alternating process of cooling and heating. In hot environment, the temperature regulation time is 6.59 min, and the temperature difference is 12.93℃. In addition, the mechanical strength of the prepared TRF_(sc) reaches 2.26 cN/dtex, which can fully meet its application in the field of thermal management textiles and devices to manage the temperature regulation of the human body or precision equipment, etc.
文摘Partially replacing polyvinyl-alcohol(PVA)fibers with polypropylene(PP)fibers in strain-hardening cementitious composites(fiber hybridization)modify certain mechanical properties of these materials.The hybridization based on the introduction of low-modulus hydrophobic polypropylene fibers improves the ductility and the strain-hardening behavior of the cementitious composites containing polyvinyl-alcohol fibers of different types(PVA-SHCC).Pull-out tests indicate that adding PP fibers increases the energy capacity of the hybrid composite with respect to the material containing only PVA fibers under tensile loading,and PP-fiber geometry(i.e.,section shape and length)is a key factor in enhancing the strain capacity.
文摘In the maritime industry, cost-effective and lightweight Fiber Reinforced Polymer (FRP) composites offer excellent mechanical properties, design flexibility, and corrosion resistance. However, their reliability in harsh seawater conditions is a concern. Researchers address this by exploring three approaches: coating fiber surfaces, hybridizing fibers and matrices with or without nanofillers, and interply rearrangement. This study focuses on evaluating the synergistic effects of interply rearrangement of glass/carbon fibers and hybrid nanofillers, specifically Multi-walled carbon nanotubes (MWCNT) and Halloysite nanotubes (HNT). The aim is to enhance impact properties by minimizing moisture absorption. Hybrid nanocomposites with equal-weight proportions of two nanofillers: 0 wt.%, 1 wt.%, and 2 wt.% were exposed to seawater for 90 days. Experimental data was subjected to modelling through the application of Predictive Fick’s Law. The study found that the hybrid composite containing 2 wt.% hybrid nanofillers exhibited a 22.10% increase in impact performance compared to non-modified counterparts. After 90 days of seawater aging, the material exhibited enhanced resistance to moisture absorption (15.74%) and minimal reduction in impact strength (8.52%) compared to its dry strength, with lower diffusion coefficients.
基金The National Natural Science Foundation of China(No.51108238)
文摘In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets.
基金Project(51808545)supported by the National Natural Science Foundation of ChinaProject(8184083)supported by the Beijing Natural Science Foundation,ChinaProject(2021YQLJ05)supported by the Fundamental Research Funds for the Central Universities,China。
文摘In the present study,the mechanical properties of polyvinyl alcohol(PVA)-basalt hybrid fiber reinforced engineered cementitious composites(ECC)after exposure to elevated temperatures were experimentally investigated.Five temperatures of 20,50,100,200 and 400℃ were set to evaluate the residual compressive,tensile and flexural behaviors of hybrid and mono fiber ECC.It was shown that partial replacement of PVA fibers with basalt fibers endowed ECC with improved residual compressive toughness,compared to brittle failure of mono fiber ECC heated to 400℃.The tension tests indicated that the presence of basalt fibers benefited the tensile strength up to 200℃,and delayed the sharp reduction of strength to 400℃.Under flexural load,the peak deflections corresponding to flexural strengths of hybrid fiber ECC were found to be less vulnerable ranging from 20 to 100℃.Further,the scanning electron microscopy(SEM)results uncovered that the rupture of basalt fiber at moderate temperature and its pullout mechanism at high temperature was responsible for the mechanical evolution of hybrid fiber ECC.This work develops a better understanding of elevated temperature and basalt fiber impact on the residual mechanical properties and further provides guideline for tailoring ECC for improved fire resistance.
基金the Technical Specification for Fiber Reinforced ConcreteStructure (No. CECS:2004 2000jb15)
文摘To explore a new structure form of fiber reinforced concrete, namely, the layered steel fiber and layered hybrid fiber reinforced concrete (LSFRC and LHFRC), the mechanical properties of LSFRC and LHFRC, such as compressive strength, tensile strength, flexural strength, fatigue and durability were focused on. The experimental results show that LSFRC and LHFRC can improve the flexural strength of concrete by 20%-50%. In the aspect of improving the flexural strength of concrete, adulterant rate has more obvious effect than length/diameter ratio. Double logarithmic fatigue equation considered liveability was founded. The impermeability of LHFRC is superior to LSFRC and plain concrete (C). However, the porosity of LHFRC is lower than LSFRC and C. The shrinkage of LHFRC at every age is obviously lower than C. The antifreeze durability of LHFRC is also better than C.
基金General Program of National Natural Science Foundation of China(Grant No.51479168)The Natural Science Foundation Project of Liaoning Provincial Department of Education,China(Grant No.JJL201915404).
文摘The aim of this study is to improve the bond performance of basalt fiber reinforced polymer(BFRP)bars and recycled aggregate concrete(RAC)after being exposed to high temperatures.The bond behavior(failure modes,bond strength,bond stress-slip curves)between BFRP bars and hybrid fiber recycled aggregate concrete(HFRAC)after being exposed to temperatures ranging from 20℃up to 500℃was studied by using pull-out tests.The effect of high temperatures on mechanical properties of concrete(compressive strength,splitting tensile strength)and tensile strength of BFRP bars was also investigated.The bond strength decreased as the temperature increased and the drop of bond strength between RAC and BFRP bar was larger than that between HFRAC and BFRP bar.As the temperature rises,the key factor affecting the bond strength was gradually transformed from concrete strength to BFRP bar strength.The relationship between bond stress and slip in the dimensionless bond stress-slip ascending section was established,which was in good agreement with the experimental results.
文摘To improve the mechanical properties of concrete,Layered Hybrid Fiber Reinforced Concrete (LHFRC) was developed in this paper.Through comparative tests,the effects of layered hybrid fibers on a series of mechanical properties of concrete were discussed.The mechanical properties include compressive strength,tensile strength,flexural strength,compressive stress-strain relationship,flexural toughness and cracking resistance of concrete.The testing results and analysis demonstrate that layered hybrid fibers can significantly improve the flexural strength,toughness and cracking resistance of concrete while the cost of concrete increases slightly.
基金supported by Science and Technology Programs of Inner Mongolia(2020GG0301).
文摘The effect of fiber laser on MIG arc was investigated with 8 mm 7075-T6 high strength aluminum alloy as base material.The arc shape,droplet transfer form and electrical signal in the process of MIG welding and laser-MIG hybrid welding were analyzed.The stability of the hybrid welding process was evaluated by standard deviation analysis.The results show that with the increase of laser power,a large number of laser-induced plasma enters the arc column area,providing more conductive channels,which makes the heat of MIG arc more concentrated and the short circuit transition disappear.Due to the continuous effect of laser,the keyhole becomes a continuous electron emission source,and a stable cathode spot will be formed near the keyhole,which enhances the stability of MIG arc at the base current state.By using the method of standard deviation analysis,the voltage standard deviation of single MIG welding arc and laser-MIG hybrid arc within 4 seconds was calculated.The standard deviation of single MIG arc voltage was 1.05,and the standard deviation of MIG arc voltage in laser-MIG hybrid welding was 0.71–0.86,so the hybrid welding process was more stable.
基金Funded by the National Key Research and Development Program of China(No.2018YFC0705400)National Natural Science Foundation of China(No.51678142)the Fundamental Research Funds for the Central Universities。
文摘Ultra-high performance cement-based composites (UHPCC) is promising in construction of concrete structures that suffer impact and explosive loads.In this study,a reference UHPCC mixture with no fiber reinforcement and four mixtures with a single type of fiber reinforcement or hybrid fiber reinforcements of straight smooth and end hook type of steel fibers were prepared.Split Hopkinson pressure bar (SHPB) was performed to investigate the dynamic compression behavior of UHPCC and X-CT test and 3D reconstruction technology were used to indicate the failure process of UHPCC under impact loading.Results show that UHPCC with 1% straight smooth fiber and 2% end hook fiber reinforcements demonstrated the best static and dynamic mechanical properties.When the hybrid steel fiber reinforcements are added in the concrete,it may need more impact energy to break the matrix and to pull out the fiber reinforcements,thus,the mixture with hybrid steel fiber reinforcements demonstrates excellent dynamic compressive performance.
基金the National Program of Technical Specification for Fiber Reinforced Concrete Structures(No.15 of CECS-China Association for Engineering Construction Standardization)
文摘In order to obtain the fatigue life of layered hybrid fiber reinforced concrete (LHFRC) at different stress levels, flexural fatigue tests were carried out on specimens. The relation between fatigue lives and stress levels was simulated using the two-parameter Weibull distribution. Furthermore, both single- logarithmic and double-logarithmic regressive equations of various reliabilities were derived. It is evident that LHFRC gets the advantage of longer fatigue life over common concrete.
基金This study was supported by Science Foundation for Young Scientists of Hubei Province Educational Committee of China.
文摘In order to reveal the flexural behavior of hybrid fiber reinforced high-performance concrete deep beam, 16 high-performance concrete deep beams of different fiber volume content have been tested according to the state standards and testing methods. The effects of hybrid fiber on the yield moment and bending bearing capacity of the cross-section have been analyzed, the calculation method for the bending capacity' is discussed and the propositional formula are provided as well. Results shoxv that the flexural properties increased obviously when add ≤1.0% of volume content steel fibers and ≤0.11% of volume content polypropylene fibers in to deep beam. The results are useful to the further amendments of fiber reinforced concrete structure technical regulation (CECS 38:2004).
基金This study was supported by the National Natural Science Foundation of China(51908247)Jiangsu Natural Science Foundation Project(BK20170192)Open Fund Project of State Key Laboratory of Green Building Materials(YA-616).
文摘Engineered Cementitious Composites(ECC)is a class of high-performance fiber reinforced composites with ultra-ductility designed based on micromechanics,and it has been developed for increasing application in the construction industry during recent decades.The properties of ECC at room temperature have been tested and studied in depth,however,few studies focus on its performance after high temperature that is one of the worst conditions to ECC.To investigate the change tendency and mechanism for the high temperature flexural properties of hybrid fiber reinforced ECC and the feasibility of calcium carbonate whisker to reduce the cost of ECC materials,polyvinyl alcohol fiber(PVA)reinforced strain hardening cementitious composites(PVA-ECC),steel fiber+PVA fiber reinforced ECC(defined as HyFRECC-A)and steel fiber+PVA fiber+CaCO3 whisker reinforced ECC(defined as HyFRECC-B)subject to room temperature and 200℃,400℃,600℃,800℃elevated temperature exposure were experimentally compared.The results indicate that equally replacing PVA fibers by steel fibers degraded the flexural hardening ability of PVA-ECC at room temperature,while the addition of appropriate amount of CaCO3 whisker improved the flexural strength,toughness and flexural hardening behavior.The elevated temperature posed a significant effect on the flexural strength and toughness of the three types of ECCs.Flexural deflection hardening behavior of the three types of ECCs was eliminated after high temperature exposure.Flexural strength and toughness of PVA-ECC presented an exponential decay along with the increase of temperature.The addition of steel fiber slowed down the decay rate.Although the use of CaCO3 whisker increased the post-temperature flexural strength and toughness of HyFRECC-B,the decay rate was not further decreased.
文摘In order to improve fiber quality of green cotton,a wide hybrid was used between a green fiber cotton and Sea Island cotton.The results show that the hybrid F1 plants were stable,but F2
基金Supported by the National Natural Science Foundation of China under Grant Nos 61327012 and 61505160the Natural Science Foundation of Shaanxi Province under Grant No 2016JQ6021the Shaanxi Key Laboratory of Optical Information Technology under Grant No OIT201601
文摘A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation between the resonant wavelengths of the LPFG and MMFC since the resonant wavelengths of the LPFG and MMFC will shift in opposite directions when the surrounding RI changes. Experimental results show that the sensor possesses an enhanced sensitivity of 526.92nm/RIU in the RI range of 1.387-1.394 RIU. The response to the temperature is also discussed.
基金This work has been supported by the Yunnan Science and Technology Major Project,Yunnan China under Grant No.202002AE090010。
文摘Recently,addition of various natural fibers to high strength concrete has aroused great interest in the field of building materials.This is because natural fibers are much cheaper and locally available,as compare to synthetic fibers.Keeping in view,this current research conducted mainly focuses on the static properties of hybridized(sisal/coir),sisal and coir fiber-reinforced concrete.Two types of natural fibers sisal and coir were used in the experiment with different lengths of 10,20 and 30 mm and various natural fiber concentrations of 0.5%,1.0%,and 1.5%by mass of cement,to investigate the static properties of sisal fiber reinforced concrete(SFRC),coir fiber reinforced concrete(CFRC)and hybrid fiber reinforced concrete(HFRC).The results indicate that HFRC has increased the compressive strength up to 35.98%with the length of 20 mm and with 0.5%concentration,while the CFRC and SFRC with the length of 10 mm and with 1%concentration have increased the compressive strength up to 33.94%and 24.86%,respectively.On another hand,the split tensile strength was increased by HFRC with the length of 20 mm and with 1%concentration,CFRC with the length of 10 mm and with 1.5%concentration,and SFRC with the length of 30 mm and with 1%concentration have increased up to 25.48%,24.56%and 11.80%,respectively,while the HFRC with the length of 20 mm and with 0.5%concentration has increased the compressive strength of concrete but has decreased the split tensile strength up to 2.28%compared to PC.Overall,using the HFRC with the length of 20 mm and with 1%concentration provide the maximum output in terms of split tensile strength.