The paper presents a comparative study on the electric, dielectric and microwave properties of natural rubber based composites comprising dual phase fillers prepared from furnace carbon black or conductive carbon blac...The paper presents a comparative study on the electric, dielectric and microwave properties of natural rubber based composites comprising dual phase fillers prepared from furnace carbon black or conductive carbon black with a different amount of silica. It has been established that, the specifics of the carbon phase have a marked strong effect upon the properties mentioned above. The interpenetration of the two filler phases and the grade of isolation of the conductive carbon phase by the dielectric one depend on the ratio between them. On the other hand, that leads to a change in all properties of the studied composites, which allows tailoring those characteristics.展开更多
Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H2O2) and distilled...Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H2O2) and distilled water(H2O). The functional groups on the surface of CNTs, changes in nanotube structure and morphology were characterized by Fourier transform infrared spectroscopy(FT-IR), Raman Spectroscopy, and transmission electron microscopy(TEM). It shows that hydroxyl(OH·) is successfully introduced. The surface defects of modified CNTs were obviously higher than those of original CNTs, and the degree of agglomeration was greatly reduced. Thermal conductivity of the composites was tested by protection heat flow meter method. Compared with unmodified CNTs/CB filling system, the thermal conductivity of hybrid composites is improved by an average of 5.8% with 1.5 phr(phr is parts per hundred rubber) of hydroxyl CNTs and 40 phr of CB filled. A three-dimensional heat conduction network composed of hydroxyl CNTs and CB, as observed by TEM, contributes to the good properties. Thermal conductivity of the hybrid composites increases as temperature rises. The mechanical properties of hybrid composites are also good with hydroxyl CNTs filled nanocomposites;the tensile strength, 100% and 300% tensile stress are improved by 10.1%, 22.4% and 26.2% respectively.展开更多
Different types of carbon-silica fillers were prepared via pyrolysis-cum-water vapor of waste green tires tread and impregnation method. Dual phase fillers have been characterized by energy dispersive X-ray (EDX) spec...Different types of carbon-silica fillers were prepared via pyrolysis-cum-water vapor of waste green tires tread and impregnation method. Dual phase fillers have been characterized by energy dispersive X-ray (EDX) spectroscopy in a scanning transmission electron microscope (STEM) or STEM-EDX. Phase distribution in hybrid fillers for rubber was investigated. The results achieved show that the conditions of obtaining influence the distribution and the location of the phases in the carbon-silica hybrid fillers as well as their most essential characteristics including specific area, oil absorption number, iodine adsorption number, ash content and others.展开更多
Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_...Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_2 batteries. One of the competitive alternatives is polymer electrolytes due to their flexibility and non-flammable property. Moreover, the hybrid polymer electrolyte with enhanced electrochemical properties would be achieved by incorporating inorganic filler, liquid plasticizer and redox mediator into the polymer. While most researches of the hybrid polymer electrolyte focused on Li-ion batteries, few of them took account into its application in Li–O_2 batteries. In this review, we mainly discuss hybrid polymer electrolytes for Li–O_2 batteries with different composition. The critical issues including conductivity and stability of electrolytes are also discussed in detail. Our review provides some insights of hybrid polymer electrolytes for Li–O_2 batteries and offers necessary guidelines for designing the suitable hybrid polymer electrolyte for Li–O_2 batteries as well.展开更多
In this work, hybrid conductive fillers of carbon black (CB) and carbon nanotubes (CNTs) were introduced into polylactide (PLA)/thermoplastic poly(ether)urethane (TPU) blend (70/30 by weight) to tune the p...In this work, hybrid conductive fillers of carbon black (CB) and carbon nanotubes (CNTs) were introduced into polylactide (PLA)/thermoplastic poly(ether)urethane (TPU) blend (70/30 by weight) to tune the phase morphology and realize rapid electrically actuated shape memory effect (SME). Particularly, the dispersion of conductive fillers, the phase morphology, the electrical conductivities and the shape memory properties of the composites containing CB or CB/CNTs were comparatively investigated. The results suggested that both CB and CNTs were selectively localized in TPU phase, and induced the morphological change from the sea-island structure to the co-continuous structure. The presence of CNTs resulted in a denser CB/CNTs network, which enhanced the continuity of TPU phase. Because the formed continuous TPU phase provided stronger recovery driving force, the PLA/TPU/CB/CNTs composites showed better shape recovery properties compared with the PLA/TPU/CB composites at the same CB content. Moreover, the CB and CNTs exerted a synergistic effect on enhancing the electrical conduetivities of the composites. As a result, the prepared composites exhibited excellent electrically actuated SME and the shape recovery speed was also greatly enhanced. This work demonstrated a promising strategy to achieve rapid electrically actuated SME via the addition of hybrid nanoparticles with self-networking ability in binary PLA/TPU blends over a much larger composition range.展开更多
文摘The paper presents a comparative study on the electric, dielectric and microwave properties of natural rubber based composites comprising dual phase fillers prepared from furnace carbon black or conductive carbon black with a different amount of silica. It has been established that, the specifics of the carbon phase have a marked strong effect upon the properties mentioned above. The interpenetration of the two filler phases and the grade of isolation of the conductive carbon phase by the dielectric one depend on the ratio between them. On the other hand, that leads to a change in all properties of the studied composites, which allows tailoring those characteristics.
基金Supported by the National Natural Science Foundation of China(51606107,51576102)the Collaborative Innovation Project of Green Tire and Rubber(0200501436)
文摘Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H2O2) and distilled water(H2O). The functional groups on the surface of CNTs, changes in nanotube structure and morphology were characterized by Fourier transform infrared spectroscopy(FT-IR), Raman Spectroscopy, and transmission electron microscopy(TEM). It shows that hydroxyl(OH·) is successfully introduced. The surface defects of modified CNTs were obviously higher than those of original CNTs, and the degree of agglomeration was greatly reduced. Thermal conductivity of the composites was tested by protection heat flow meter method. Compared with unmodified CNTs/CB filling system, the thermal conductivity of hybrid composites is improved by an average of 5.8% with 1.5 phr(phr is parts per hundred rubber) of hydroxyl CNTs and 40 phr of CB filled. A three-dimensional heat conduction network composed of hydroxyl CNTs and CB, as observed by TEM, contributes to the good properties. Thermal conductivity of the hybrid composites increases as temperature rises. The mechanical properties of hybrid composites are also good with hydroxyl CNTs filled nanocomposites;the tensile strength, 100% and 300% tensile stress are improved by 10.1%, 22.4% and 26.2% respectively.
文摘Different types of carbon-silica fillers were prepared via pyrolysis-cum-water vapor of waste green tires tread and impregnation method. Dual phase fillers have been characterized by energy dispersive X-ray (EDX) spectroscopy in a scanning transmission electron microscope (STEM) or STEM-EDX. Phase distribution in hybrid fillers for rubber was investigated. The results achieved show that the conditions of obtaining influence the distribution and the location of the phases in the carbon-silica hybrid fillers as well as their most essential characteristics including specific area, oil absorption number, iodine adsorption number, ash content and others.
基金partially supported by National Natural Science Foundation of China(21673116,21633003,51602144)National Key Research and Development Program of China(2016YFB0100203)+2 种基金Natural Science Foundation of Jiangsu Province of China(BK20160068)Fundamental Research Funds for the Central Universities(021314380130)PAPD of Jiangsu Higher Education Institutions
文摘Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_2 batteries. One of the competitive alternatives is polymer electrolytes due to their flexibility and non-flammable property. Moreover, the hybrid polymer electrolyte with enhanced electrochemical properties would be achieved by incorporating inorganic filler, liquid plasticizer and redox mediator into the polymer. While most researches of the hybrid polymer electrolyte focused on Li-ion batteries, few of them took account into its application in Li–O_2 batteries. In this review, we mainly discuss hybrid polymer electrolytes for Li–O_2 batteries with different composition. The critical issues including conductivity and stability of electrolytes are also discussed in detail. Our review provides some insights of hybrid polymer electrolytes for Li–O_2 batteries and offers necessary guidelines for designing the suitable hybrid polymer electrolyte for Li–O_2 batteries as well.
基金financially supported by the National Natural Science Foundation of China(Nos.51421061 and 51210005)
文摘In this work, hybrid conductive fillers of carbon black (CB) and carbon nanotubes (CNTs) were introduced into polylactide (PLA)/thermoplastic poly(ether)urethane (TPU) blend (70/30 by weight) to tune the phase morphology and realize rapid electrically actuated shape memory effect (SME). Particularly, the dispersion of conductive fillers, the phase morphology, the electrical conductivities and the shape memory properties of the composites containing CB or CB/CNTs were comparatively investigated. The results suggested that both CB and CNTs were selectively localized in TPU phase, and induced the morphological change from the sea-island structure to the co-continuous structure. The presence of CNTs resulted in a denser CB/CNTs network, which enhanced the continuity of TPU phase. Because the formed continuous TPU phase provided stronger recovery driving force, the PLA/TPU/CB/CNTs composites showed better shape recovery properties compared with the PLA/TPU/CB composites at the same CB content. Moreover, the CB and CNTs exerted a synergistic effect on enhancing the electrical conduetivities of the composites. As a result, the prepared composites exhibited excellent electrically actuated SME and the shape recovery speed was also greatly enhanced. This work demonstrated a promising strategy to achieve rapid electrically actuated SME via the addition of hybrid nanoparticles with self-networking ability in binary PLA/TPU blends over a much larger composition range.