期刊文献+
共找到121篇文章
< 1 2 7 >
每页显示 20 50 100
Differential evolution algorithm for hybrid flow-shop scheduling problems 被引量:9
1
作者 Ye Xu Ling Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第5期794-798,共5页
Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a... Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems. 展开更多
关键词 hybrid flow-shop (HFS) scheduling differential evolution (DE) local search.
下载PDF
MODIFIED BOTTLENECK-BASED PROCEDURE FOR LARGE-SCALE FLOW-SHOP SCHEDULING PROBLEMS WITH BOTTLENECK
2
作者 ZUO Yan GU Hanyu XI Yugeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2006年第3期356-361,共6页
A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a sche... A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a schedule for the bottleneck machine is first constructed optimally and then the non-bottleneck machines are scheduled around the bottleneck schedule by some effective dispatching rules. Computational results show that the modified bottleneck-based procedure can achieve a tradeoff between solution quality and computational time comparing with SB procedure for medium-size problems. Furthermore it can obtain a good solution in quite short time for large-scale scheduling problems. 展开更多
关键词 flow-shop scheduling problem Heuristic Bottleneck machine
下载PDF
具有紧时、高能耗特征的混合流水车间多目标调度优化问题
3
作者 常大亮 史海波 刘昶 《中国机械工程》 EI CAS CSCD 北大核心 2024年第7期1269-1278,共10页
针对具有紧时、高能耗工序特征的混合流水车间调度问题,以优化产品暴露时间、最大完工时间和能源消耗为目标,建立混合流水车间调度模型,并提出一种改进的多目标粒子群算法进行有效求解。首先构建了基于ISDE指标的档案维护策略及局部邻... 针对具有紧时、高能耗工序特征的混合流水车间调度问题,以优化产品暴露时间、最大完工时间和能源消耗为目标,建立混合流水车间调度模型,并提出一种改进的多目标粒子群算法进行有效求解。首先构建了基于ISDE指标的档案维护策略及局部邻域搜索策略,辅助算法跃出局部极值及减少生产阻塞。之后,提出一种基于模糊理论的决策分析方法选取最优调度方案。最后,通过仿真实验验证提出的多目标调度模型与算法的可行性和优越性。 展开更多
关键词 混合流水车间调度问题 多目标粒子群优化算法 紧时性约束 高能耗
下载PDF
混合遗传变邻域搜索算法求解柔性车间调度问题
4
作者 周伟 孙瑜 +1 位作者 李西兴 王林琳 《计算机工程与设计》 北大核心 2024年第7期2041-2049,共9页
针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;... 针对考虑生产成本的柔性作业车间调度问题(flow job shop scheduling problem, FJSP),以完工时间与加工成本为优化指标,提出一种求解FJSP的混合遗传变邻域搜索算法。根据个体适应度对种群分割,结合自适应交叉概率改进子代种群产生方式;设计两种邻域结构增强算法的局部搜索能力;提出一种基于动态交叉变异概率的优化算法流程提高求解效率。运用提出的算法求解基准实例与实际问题测试,验证了算法的有效性。 展开更多
关键词 柔性作业车间调度 加工成本 遗传算法 变邻域搜索 混合算法 动态概率 优化
下载PDF
双种群混合遗传算法求解航空复合材料柔性调度问题
5
作者 王玉芳 姚彬彬 +1 位作者 陈凡 曾亚志 《计算机工程与设计》 北大核心 2024年第10期3143-3152,共10页
考虑航空复合材料柔性车间调度中的运输约束,以最小化完工时间为目标,建立调度模型,提出一种改进的双种群混合遗传算法进行求解。根据问题特点,基于工序排序、机器选择和运输约束3个子问题,设计三层实数编码以及对应解码方案。采用混合... 考虑航空复合材料柔性车间调度中的运输约束,以最小化完工时间为目标,建立调度模型,提出一种改进的双种群混合遗传算法进行求解。根据问题特点,基于工序排序、机器选择和运输约束3个子问题,设计三层实数编码以及对应解码方案。采用混合初始化提高种群质量,进化过程中采用交叉算子执行全局搜索,为双种群设计基于机器负载平衡和变邻域的局部搜索,提高全局和局部搜索能力。与对比算法相比10个测试算例中BPRD指标取得9个最优,APRD指标全部取得最优,t检验显著性有明显差异,验证算法的优越性。将算法应用于航空复合材料车间中,实现实际生产的调度,验证算法的可行性。 展开更多
关键词 航空复合材料 柔性作业车间调度 双种群 混合遗传算法 运输约束 机器负载平衡 变邻域
下载PDF
基于遗传算法的混合Flow-shop调度方法 被引量:46
6
作者 王万良 姚明海 +1 位作者 吴云高 吴启迪 《系统仿真学报》 CAS CSCD 2002年第7期863-865,869,共4页
混合Flow-shop调度问题 (Hybrid flow-shop scheduling problem, HFSP),是一般Flow-shop调度问题的推广,由于在某些工序上存在并行机器,所以比一般的Flow-shop调度问题更复杂。本文提出了遗传算法求解混合Flow-shop调度问题的方法,给出... 混合Flow-shop调度问题 (Hybrid flow-shop scheduling problem, HFSP),是一般Flow-shop调度问题的推广,由于在某些工序上存在并行机器,所以比一般的Flow-shop调度问题更复杂。本文提出了遗传算法求解混合Flow-shop调度问题的方法,给出了一种新的编码方法,设计了相应的交叉和变异操作算子,能够保证个体的合法性,同时又具有遗传算法本身所要求的随机性。最后给出了某汽车发动机厂金加工车间的生产调度实例,表明了此算法的有效性。 展开更多
关键词 遗传算法 混合flow-shop调度问题 组合优化问题 数学规划
下载PDF
改进Jaya算法求解混合流水车间调度问题
7
作者 周豪 张超勇 +1 位作者 刘辉 罗敏 《中国机械工程》 EI CAS CSCD 北大核心 2024年第8期1462-1471,1508,共11页
混合流水车间调度问题(HFSP)是广泛存在于流程制造系统中的NP-hard问题。针对最小化完工时间的HFSP,结合Jaya算法和禁忌搜索的优势,提出了一种改进Jaya算法。在该算法迭代更新阶段,根据设计的编码方式提出一种基于路径重连的方法来进行... 混合流水车间调度问题(HFSP)是广泛存在于流程制造系统中的NP-hard问题。针对最小化完工时间的HFSP,结合Jaya算法和禁忌搜索的优势,提出了一种改进Jaya算法。在该算法迭代更新阶段,根据设计的编码方式提出一种基于路径重连的方法来进行离散更新,以保证种群的多样性,提高全局搜索能力。为提高局部搜索能力,提出融合两种邻域结构的禁忌搜索算法来进一步提高解的质量,并根据问题特性对邻域结构进行适配调整。采用所提算法求解三种基准测试集,在大规模经典测试集中求出新的最优解,在解的质量方面优于当前文献中其他算法,验证了所提算法的有效性和优越性。 展开更多
关键词 混合流水车间调度 路径重连 禁忌搜索 完工时间
下载PDF
基于改进MOEA/D的模糊柔性作业车间调度算法
8
作者 郑锦灿 邵立珍 雷雪梅 《计算机工程》 CAS CSCD 北大核心 2024年第6期336-345,共10页
针对实际生产车间中加工时间的不确定性,将加工时间以模糊数的形式表示,建立以最小化模糊最大完工时间和模糊总材料消耗为优化目标的多目标模糊柔性作业车间调度问题数学模型,提出一种改进基于分解的多目标进化算法(IMOEA/D)进行求解。... 针对实际生产车间中加工时间的不确定性,将加工时间以模糊数的形式表示,建立以最小化模糊最大完工时间和模糊总材料消耗为优化目标的多目标模糊柔性作业车间调度问题数学模型,提出一种改进基于分解的多目标进化算法(IMOEA/D)进行求解。该算法基于机器和工序两层编码并采用混合的初始化策略提高初始种群的质量,利用插入式贪婪解码策略对机器的选择进行解码,缩短总加工时间;采用基于邻域和外部存档的选择操作结合改进的交叉变异算子进行种群更新,提高搜索效率;设置邻域搜索的启动条件,并基于4种邻域动作进行变邻域搜索,提高局部搜索能力;通过田口实验设计方法研究关键参数对算法性能的影响,同时得到算法的最优性能参数。在Xu 1~Xu 2、Lei 1~Lei 4和Remanu 1~Remanu 4测试集上将所提算法与其他算法进行对比,结果表明,IMOEA/D算法的解集数量和目标函数值均较优,在Lei 2算例获得的解集个数为对比算法的2倍以上。 展开更多
关键词 模糊柔性作业车间调度问题 基于分解的多目标进化算法 混合初始化 选择策略 邻域搜索
下载PDF
基于改进的NSGA-II纺织生产车间柔性作业车间调度问题算法的研究
9
作者 贾坤 汪治学 陈瀚宁 《新型工业化》 2024年第5期85-95,共11页
在纺织生产线调度领域,传统的人工调度方式已难以满足当前对高效利用机器和提升生产效率的迫切需求。鉴于此,本文建立了以最小化最大完工时间和机器总负载为优化目标的多目标柔性作业车间调度问题(flexible job shop scheduling problem... 在纺织生产线调度领域,传统的人工调度方式已难以满足当前对高效利用机器和提升生产效率的迫切需求。鉴于此,本文建立了以最小化最大完工时间和机器总负载为优化目标的多目标柔性作业车间调度问题(flexible job shop scheduling problem,FJSP)数学模型,并提出了一种改进的NSGA-II算法(INSGA-II)用于求解。本文的主要特点是:(1)该算法采用基于工序和机器的两层编码方法;(2)采用混合种群初始化策略,目的是提高种群的初始质量;(3)设计了一种基于迭代次数的变领域搜索策略,在减少无效搜索的同时提高了局部搜索能力。本文在MK01-MK09和abz05-abz09的测试集上,将所提出的算法与其他算法(MOEA/D、MOEA/DD和NSGA-II)进行对比,并通过对14个标准算例的分析,证明了改进个NSGA-II算法在求解FJSP问题中的有效性。 展开更多
关键词 柔性作业车间调度问题 多目标优化算法 变领域搜索策略 混合种群初始化策略
下载PDF
Multidirection Update-Based Multiobjective Particle Swarm Optimization for Mixed No-Idle Flow-Shop Scheduling Problem 被引量:5
10
作者 Wenqiang Zhang Wenlin Hou +2 位作者 Chen Li Weidong Yang Mitsuo Gen 《Complex System Modeling and Simulation》 2021年第3期176-197,共22页
The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the ... The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the complicated multiobjective MNIFSP,a MultiDirection Update(MDU)based Multiobjective Particle Swarm Optimization(MDU-MoPSO)is proposed in this study.For the biobjective optimization problem of the MNIFSP with minimization of makespan and total processing time,the MDU strategy divides particles into three subgroups according to a hybrid selection mechanism.Each subgroup prefers one convergence direction.Two subgroups are individually close to the two edge areas of the Pareto Front(PF)and serve two objectives,whereas the other one approaches the central area of the PF,preferring the two objectives at the same time.The MDU-MoPSO adopts a job sequence representation method and an exchange sequence-based particle update operation,which can better reflect the characteristics of sequence differences among particles.The MDU-MoPSO updates the particle in multiple directions and interacts in each direction,which speeds up the convergence while maintaining a good distribution performance.The experimental results and comparison of six classical evolutionary algorithms for various benchmark problems demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 multiobjective optimization Particle Swarm Optimization(PSO) Mixed No-Idle flow-shop scheduling problem(MNLFSP) multidirection update
原文传递
Hybrid Genetic Algorithms with Fuzzy Logic Controller
11
作者 Zheng Dawei & Gen Mitsuo Department of Industrial and Systems Engineering, Ashikaga Institute of Technology, 326, Japan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2001年第3期9-15,共7页
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy com... In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper. 展开更多
关键词 Machine scheduling problem hybrid genetic algorithms Fuzzy logic.
下载PDF
基于改进多种群候鸟迁徙算法的混合流水车间调度
12
作者 张素君 杨文强 顾幸生 《上海交通大学学报》 EI CAS CSCD 北大核心 2023年第10期1378-1388,共11页
针对带顺序依赖准备时间的混合流水车间调度(HFS-SDST)问题,以最小化总最大作业完成时间为调度目标,提出一种改进多种群候鸟迁徙优化(IMMBO)算法.算法中个体基于工件加工顺序进行编码,用改进的NEH(MNEH)算法产生初始种群,并按照适应度... 针对带顺序依赖准备时间的混合流水车间调度(HFS-SDST)问题,以最小化总最大作业完成时间为调度目标,提出一种改进多种群候鸟迁徙优化(IMMBO)算法.算法中个体基于工件加工顺序进行编码,用改进的NEH(MNEH)算法产生初始种群,并按照适应度值分配到各子种群.子种群中领飞鸟和跟飞鸟分别利用串行和并行邻域策略产生邻域个体,如果跟飞鸟优于领飞鸟,二者互换,完成种群内部个体的信息交互;在IMMBO算法中嵌入离散鲸鱼优化策略对各子种群的领飞鸟进行优化,实现子种群之间信息交互;为提高算法的局部搜索(LS)能力,对种群中最优个体执行LS,同时,为了避免算法早熟收敛,针对每个种群的领飞鸟设计了种群多样化控制策略.最后,在实验法调整算法参数的基础上,对IMMBO的4个变体进行了仿真实验,通过测试Ta自适应算例验证IMMBO算法各部分的作用;将IMMBO算法与现有3个算法测试Ta自适应算例,进行实验结果比较,证明了IMMBO算法求解混合车间调度问题的有效性. 展开更多
关键词 混合流水车间调度 改进多种群候鸟迁徙优化 子种群信息交互 串行邻域 并行邻域
下载PDF
混合麻雀算法求解带准备时间的分布式柔性作业车间调度问题
13
作者 秦红斌 常永顺 +2 位作者 唐红涛 张峰 王玲军 《现代制造工程》 CSCD 北大核心 2023年第11期1-11,32,共12页
分布式制造模式因多工厂/车间协同生产而使其制造环境存在多样性和多变性。研究了考虑零件加工前的动态准备时间的分布式柔性作业车间调度问题(Distributed Flexible Job Shop Scheduling Problem, DFJSP)。针对缸体零件加工阶段存在多... 分布式制造模式因多工厂/车间协同生产而使其制造环境存在多样性和多变性。研究了考虑零件加工前的动态准备时间的分布式柔性作业车间调度问题(Distributed Flexible Job Shop Scheduling Problem, DFJSP)。针对缸体零件加工阶段存在多工位零件装夹定位、拆卸和换刀等动态准备时间的实际生产情况,建立了以完工时间、碳排放和订单拖期为目标的DFJSP模型;提出了一种混合麻雀算法(Hybrid Sparrow Search Algorithm, HSSA)对上述模型进行求解。HSSA算法根据模型特点,采用了三层编码方式和多种群初始化策略,设计了一种三层变邻域搜索结构,引入了POX、PMX交叉算子和高斯变异算子来完成交叉、变异操作,同时设计了一种基于支配关系的精英选择策略。通过仿真及与其他算法的对比分析,验证了HSSA算法的优越性和可靠性。 展开更多
关键词 准备时间 分布式柔性作业车间调度问题 混合麻雀算法 三层变邻域搜索结构
下载PDF
改进的哈里斯鹰算法求解农产品供应链调度 被引量:1
14
作者 支永坤 刘欢 代永强 《计算机应用研究》 CSCD 北大核心 2023年第2期413-417,449,共6页
针对农产品流通体系的效率低、流通链条协同效率不高、紧急情况下食品供给慢等问题,将农产品供应链调度问题建模成混合流水车间调度问题。结合禁忌搜索算法中禁忌表机制,离散化实数编码,提出了一种改进的哈里斯鹰算法来求解农产品供应... 针对农产品流通体系的效率低、流通链条协同效率不高、紧急情况下食品供给慢等问题,将农产品供应链调度问题建模成混合流水车间调度问题。结合禁忌搜索算法中禁忌表机制,离散化实数编码,提出了一种改进的哈里斯鹰算法来求解农产品供应链调度问题。该方法相比较原始的哈里斯鹰算法,降低了算法陷入局部最优的可能,进一步提高了算法的求解精度。实验结果表明相比较对比算法,改进的哈里斯鹰算法在提出的农产品供应链调度问题模型上取得了更好的效果。 展开更多
关键词 农产品供应链 哈里斯鹰算法 混合流水车间调度 禁忌搜索
下载PDF
GA-COA求解柔性作业车间多资源调度问题 被引量:1
15
作者 姜鹏 方成刚 杨帆 《机械设计与制造》 北大核心 2023年第3期156-159,164,共5页
针对传统柔性作业车间调度在仓储、运输方面考虑的不足,将工件的存储位置以及工件在仓库、机床之间的运输考虑到传统柔性作业车间调度问题(FJSP)中。提出一种考虑仓储、运输及加工的柔性作业车间多资源调度问题(MRFJSP),以最小完工时间... 针对传统柔性作业车间调度在仓储、运输方面考虑的不足,将工件的存储位置以及工件在仓库、机床之间的运输考虑到传统柔性作业车间调度问题(FJSP)中。提出一种考虑仓储、运输及加工的柔性作业车间多资源调度问题(MRFJSP),以最小完工时间为目标函数进行数学建模。考虑到遗传算法(GA)在求解车间调度问题中收敛速度慢、易陷入局部最优的问题,将郊狼优化算法(COA)的组内郊狼成长、生与死进行改进并与GA结合,提出一种带随机动态分组的遗传-郊狼混合算法。最后,通过算例验证了模型的正确性,并将混合算法与原算法进行对比,验证其优越性。 展开更多
关键词 柔性作业车间多资源调度 仓储 运输 遗传—郊狼混合算法
下载PDF
采用改进两点交叉算子的改进自适应遗传算法求解不相关并行机混合流水车间调度问题 被引量:3
16
作者 郑堃 练志伟 +3 位作者 顾新艳 朱长建 徐慧 冯雪晴 《中国机械工程》 EI CAS CSCD 北大核心 2023年第14期1647-1658,1671,共13页
针对不相关并行机的混合流水车间调度问题,提出了改进两点交叉算子(ITPX)的自适应遗传算法。首先,利用精确取点方式提高两点交叉算子的求解性能;其次,论证了基于激素调节的自适应选择概率引导种群的收敛趋势;然后,建立优质染色体池和记... 针对不相关并行机的混合流水车间调度问题,提出了改进两点交叉算子(ITPX)的自适应遗传算法。首先,利用精确取点方式提高两点交叉算子的求解性能;其次,论证了基于激素调节的自适应选择概率引导种群的收敛趋势;然后,建立优质染色体池和记忆因子来记录种群迭代的优质解,并实现两种不同区域的交叉。实验结果表明,ITPX可节省优化时间,提高求解性能;自适应概率可增强收敛性;改进两点交叉算子的改进自适应遗传算法(ITPX-IAGA)可缩短40%以上的求解时间,并提高求解性能。 展开更多
关键词 混合流水车间调度问题 不相关并行机 自适应遗传算法 改进两点交叉算子 激素调节机制
下载PDF
Project Scheduling Using Hybrid Genetic Algorithm with Fuzzy Logic Controller in SCM Environment 被引量:1
17
作者 Mitsuo Gen KwanWoo Kim Genji Yamazaki 《Tsinghua Science and Technology》 SCIE EI CAS 2003年第1期19-29,共11页
In supply chain management (SCM) environment, we consider a resource-constrained project scheduling problem (rcPSP) model as one of advanced scheduling problems considered by a constraint programming technique. We de... In supply chain management (SCM) environment, we consider a resource-constrained project scheduling problem (rcPSP) model as one of advanced scheduling problems considered by a constraint programming technique. We develop a hybrid genetic algorithm (hGA) with a fuzzy logic controller (FLC) to solve the rcPSP which is the well known NP-hard problem. This new approach is based on the design of genetic operators with FLC through initializing the serial method which is superior for a large rcPSP scale. For solving these rcPSP problems, we first demonstrate that our hGA with FLC (flc-hGA) yields better results than several heuristic procedures presented in the literature. We have revealed a fact that flc-hGA has the evolutionary behaviors of average fitness better than hGA without FLC. 展开更多
关键词 resource-constrained project scheduling problem (rcPSP) priority rule method (PRM) hybrid genetic algorithm (hGA) fuzzy logic controller (FLC)
原文传递
Real-Time Hybrid Flow Shop Scheduling Approach in Smart Manufacturing Environment 被引量:4
18
作者 Xiuli Wu Zheng Cao Shaomin Wu 《Complex System Modeling and Simulation》 2021年第4期335-350,共16页
Smart manufacturing in the“Industry 4.0”strategy promotes the deep integration of manufacturing and information technologies,which makes the manufacturing system a ubiquitous environment.However,the real-time schedu... Smart manufacturing in the“Industry 4.0”strategy promotes the deep integration of manufacturing and information technologies,which makes the manufacturing system a ubiquitous environment.However,the real-time scheduling of such a manufacturing system is a challenge faced by many decision makers.To deal with this challenge,this study focuses on the real-time hybrid flow shop scheduling problem(HFSP).First,the characteristic of the hybrid flow shop in a smart manufacturing environment is analyzed,and its scheduling problem is described.Second,a real-time scheduling approach for the HFSP is proposed.The core module is to employ gene expression programming to construct a new and efficient scheduling rule according to the real-time status in the hybrid flow shop.With the scheduling rule,the priorities of the waiting job are calculated,and the job with the highest priority will be scheduled at this decision time point.A group of experiments are performed to prove the performance of the proposed approach.The numerical experiments show that the real-time scheduling approach outperforms other single-scheduling rules and the back-propagation neural network method in optimizing most objectives for different size instances.Therefore,the contribution of this study is the proposal of a real-time scheduling approach,which is an effective approach for real-time hybrid flow shop scheduling in a smart manufacturing environment. 展开更多
关键词 smart manufacturing real-time scheduling hybrid flow shop scheduling problem gene expression programming
原文传递
Hybrid genetic algorithm for bi-objective resourceconstrained project scheduling 被引量:1
19
作者 Fikri KUCUKSAYACIGIL Gündüz ULUSOY 《Frontiers of Engineering Management》 2020年第3期426-446,共21页
In this study,we considered a bi-objective,multi-project,multi-mode resource-constrained project scheduling problem.We adopted three objective pairs as combinations of the net present value(NPV)as a financial performa... In this study,we considered a bi-objective,multi-project,multi-mode resource-constrained project scheduling problem.We adopted three objective pairs as combinations of the net present value(NPV)as a financial performance measure with one of the time-based performance measures,namely,makespan(Cmax),mean completion time(MCT),and mean flow time(MFT)(i.e.,minCmax/maxA^PF,minA/Cr/max7VPF,and min MFTI mdixNPV).We developed a hybrid non-dominated sorting genetic algorithm Ⅱ(hybrid-NSGA-Ⅱ)as a solution method by introducing a backward-forward pass(BFP)procedure and an injection procedure into NSGA-Ⅱ.The BFP was proposed for new population generation and post-processing.Then,an injection procedure was introduced to increase diversity.The BFP and injection procedures led to improved objective functional values.The injection procedure generated a significantly high number of non-dominated solutions,thereby resulting in great diversity.An extensive computational study was performed.Results showed that hybrid-NSGA-Ⅱ surpassed NSGA-Ⅱ in terms of the performance metrics hypervolume,maximum spread,and the number of nondominated solutions.Solutions were obtained for the objective pairs using hybrid-NSGA-Ⅱ and three different test problem sets with specific properties.Further analysis was performed by employing cash balance,which was another financial performance measure of practical importance.Several managerial insights and extensions for further research were presented. 展开更多
关键词 backward-forward scheduling hybrid biobjective genetic algorithm injection procedure maximum cash balance multi-objective multi-project multi-mode resource-constrained project scheduling problem
原文传递
Fuzzy Resource-Constrained Project Scheduling Problem for Software Development
20
作者 WANG Xianggang HUANG Wei 《Wuhan University Journal of Natural Sciences》 CAS 2010年第1期25-30,共6页
This paper presents a new method to solve the resource-constrained project scheduling problem for software development. In this method,activity duration times are described as fuzzy variables and resource-constrained ... This paper presents a new method to solve the resource-constrained project scheduling problem for software development. In this method,activity duration times are described as fuzzy variables and resource-constrained software project scheduling problems are described as fuzzy programming models. First,how to model the software project scheduling problem under the fuzzy environment conditions is proposed. Second,in order to satisfy the different requirements of decision-making,two novel fuzzy project scheduling models,expected cost model and credibility maximization model,are suggested. Third,a hybrid intelligent algorithm integrated by genetic algorithm and fuzzy simulation is designed to solve the above two fuzzy programming models. Numerical experiments illustrate the effectiveness of the hybrid intelligent algorithm. 展开更多
关键词 project scheduling problem fuzzy simulation genetic algorithm hybrid intelligent algorithm
原文传递
上一页 1 2 7 下一页 到第
使用帮助 返回顶部