Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a...Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.展开更多
A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a sche...A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a schedule for the bottleneck machine is first constructed optimally and then the non-bottleneck machines are scheduled around the bottleneck schedule by some effective dispatching rules. Computational results show that the modified bottleneck-based procedure can achieve a tradeoff between solution quality and computational time comparing with SB procedure for medium-size problems. Furthermore it can obtain a good solution in quite short time for large-scale scheduling problems.展开更多
The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the ...The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the complicated multiobjective MNIFSP,a MultiDirection Update(MDU)based Multiobjective Particle Swarm Optimization(MDU-MoPSO)is proposed in this study.For the biobjective optimization problem of the MNIFSP with minimization of makespan and total processing time,the MDU strategy divides particles into three subgroups according to a hybrid selection mechanism.Each subgroup prefers one convergence direction.Two subgroups are individually close to the two edge areas of the Pareto Front(PF)and serve two objectives,whereas the other one approaches the central area of the PF,preferring the two objectives at the same time.The MDU-MoPSO adopts a job sequence representation method and an exchange sequence-based particle update operation,which can better reflect the characteristics of sequence differences among particles.The MDU-MoPSO updates the particle in multiple directions and interacts in each direction,which speeds up the convergence while maintaining a good distribution performance.The experimental results and comparison of six classical evolutionary algorithms for various benchmark problems demonstrate the effectiveness of the proposed algorithm.展开更多
In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy com...In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.展开更多
In supply chain management (SCM) environment, we consider a resource-constrained project scheduling problem (rcPSP) model as one of advanced scheduling problems considered by a constraint programming technique. We de...In supply chain management (SCM) environment, we consider a resource-constrained project scheduling problem (rcPSP) model as one of advanced scheduling problems considered by a constraint programming technique. We develop a hybrid genetic algorithm (hGA) with a fuzzy logic controller (FLC) to solve the rcPSP which is the well known NP-hard problem. This new approach is based on the design of genetic operators with FLC through initializing the serial method which is superior for a large rcPSP scale. For solving these rcPSP problems, we first demonstrate that our hGA with FLC (flc-hGA) yields better results than several heuristic procedures presented in the literature. We have revealed a fact that flc-hGA has the evolutionary behaviors of average fitness better than hGA without FLC.展开更多
Smart manufacturing in the“Industry 4.0”strategy promotes the deep integration of manufacturing and information technologies,which makes the manufacturing system a ubiquitous environment.However,the real-time schedu...Smart manufacturing in the“Industry 4.0”strategy promotes the deep integration of manufacturing and information technologies,which makes the manufacturing system a ubiquitous environment.However,the real-time scheduling of such a manufacturing system is a challenge faced by many decision makers.To deal with this challenge,this study focuses on the real-time hybrid flow shop scheduling problem(HFSP).First,the characteristic of the hybrid flow shop in a smart manufacturing environment is analyzed,and its scheduling problem is described.Second,a real-time scheduling approach for the HFSP is proposed.The core module is to employ gene expression programming to construct a new and efficient scheduling rule according to the real-time status in the hybrid flow shop.With the scheduling rule,the priorities of the waiting job are calculated,and the job with the highest priority will be scheduled at this decision time point.A group of experiments are performed to prove the performance of the proposed approach.The numerical experiments show that the real-time scheduling approach outperforms other single-scheduling rules and the back-propagation neural network method in optimizing most objectives for different size instances.Therefore,the contribution of this study is the proposal of a real-time scheduling approach,which is an effective approach for real-time hybrid flow shop scheduling in a smart manufacturing environment.展开更多
In this study,we considered a bi-objective,multi-project,multi-mode resource-constrained project scheduling problem.We adopted three objective pairs as combinations of the net present value(NPV)as a financial performa...In this study,we considered a bi-objective,multi-project,multi-mode resource-constrained project scheduling problem.We adopted three objective pairs as combinations of the net present value(NPV)as a financial performance measure with one of the time-based performance measures,namely,makespan(Cmax),mean completion time(MCT),and mean flow time(MFT)(i.e.,minCmax/maxA^PF,minA/Cr/max7VPF,and min MFTI mdixNPV).We developed a hybrid non-dominated sorting genetic algorithm Ⅱ(hybrid-NSGA-Ⅱ)as a solution method by introducing a backward-forward pass(BFP)procedure and an injection procedure into NSGA-Ⅱ.The BFP was proposed for new population generation and post-processing.Then,an injection procedure was introduced to increase diversity.The BFP and injection procedures led to improved objective functional values.The injection procedure generated a significantly high number of non-dominated solutions,thereby resulting in great diversity.An extensive computational study was performed.Results showed that hybrid-NSGA-Ⅱ surpassed NSGA-Ⅱ in terms of the performance metrics hypervolume,maximum spread,and the number of nondominated solutions.Solutions were obtained for the objective pairs using hybrid-NSGA-Ⅱ and three different test problem sets with specific properties.Further analysis was performed by employing cash balance,which was another financial performance measure of practical importance.Several managerial insights and extensions for further research were presented.展开更多
This paper presents a new method to solve the resource-constrained project scheduling problem for software development. In this method,activity duration times are described as fuzzy variables and resource-constrained ...This paper presents a new method to solve the resource-constrained project scheduling problem for software development. In this method,activity duration times are described as fuzzy variables and resource-constrained software project scheduling problems are described as fuzzy programming models. First,how to model the software project scheduling problem under the fuzzy environment conditions is proposed. Second,in order to satisfy the different requirements of decision-making,two novel fuzzy project scheduling models,expected cost model and credibility maximization model,are suggested. Third,a hybrid intelligent algorithm integrated by genetic algorithm and fuzzy simulation is designed to solve the above two fuzzy programming models. Numerical experiments illustrate the effectiveness of the hybrid intelligent algorithm.展开更多
基金supported by the National Natural Science Fundation of China (60774082 70871065+2 种基金 60834004)the Program for New Century Excellent Talents in University (NCET-10-0505)the Doctoral Program Foundation of Institutions of Higher Education of China(20100002110014)
文摘Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.
基金This project is supported by National Natural Science Foundation of China (No.60274013, No.60474002)Shanghai City Development Found for Science and Technology, China(No.04DZ11008)
文摘A new bottleneck-based heuristic for large-scale flow-shop scheduling problems with a bottleneck is proposed, which is simpler but more tailored than the shifting bottleneck (SB) procedure. In this algorithm, a schedule for the bottleneck machine is first constructed optimally and then the non-bottleneck machines are scheduled around the bottleneck schedule by some effective dispatching rules. Computational results show that the modified bottleneck-based procedure can achieve a tradeoff between solution quality and computational time comparing with SB procedure for medium-size problems. Furthermore it can obtain a good solution in quite short time for large-scale scheduling problems.
基金This work was partly supported by the National Natural Science Foundation of China(No.61772173)the Science and Technology Research Project of Henan Province(No.202102210131)+1 种基金the Innovative Funds Plan of Henan University of Technology(No.2020ZKCJ02)the Grant-in-Aid for Scientific Research(C)of Japan Society of Promotion of Science(No.19K12148).
文摘The Mixed No-Idle Flow-shop Scheduling Problem(MNIFSP)is an extension of flow-shop scheduling,which has practical significance and application prospects in production scheduling.To improve the efficacy of solving the complicated multiobjective MNIFSP,a MultiDirection Update(MDU)based Multiobjective Particle Swarm Optimization(MDU-MoPSO)is proposed in this study.For the biobjective optimization problem of the MNIFSP with minimization of makespan and total processing time,the MDU strategy divides particles into three subgroups according to a hybrid selection mechanism.Each subgroup prefers one convergence direction.Two subgroups are individually close to the two edge areas of the Pareto Front(PF)and serve two objectives,whereas the other one approaches the central area of the PF,preferring the two objectives at the same time.The MDU-MoPSO adopts a job sequence representation method and an exchange sequence-based particle update operation,which can better reflect the characteristics of sequence differences among particles.The MDU-MoPSO updates the particle in multiple directions and interacts in each direction,which speeds up the convergence while maintaining a good distribution performance.The experimental results and comparison of six classical evolutionary algorithms for various benchmark problems demonstrate the effectiveness of the proposed algorithm.
文摘In this paper, a new implementation of genetic algorithms (GAs) is developed for the machine scheduling problem, which is abundant among the modern manufacturing systems. The performance measure of early and tardy completion of jobs is very natural as one's aim, which is usually to minimize simultaneously both earliness and tardiness of all jobs. As the problem is NP-hard and no effective algorithms exist, we propose a hybrid genetic algorithms approach to deal with it. We adjust the crossover and mutation probabilities by fuzzy logic controller whereas the hybrid genetic algorithm does not require preliminary experiments to determine probabilities for genetic operators. The experimental results show the effectiveness of the GAs method proposed in the paper.
文摘In supply chain management (SCM) environment, we consider a resource-constrained project scheduling problem (rcPSP) model as one of advanced scheduling problems considered by a constraint programming technique. We develop a hybrid genetic algorithm (hGA) with a fuzzy logic controller (FLC) to solve the rcPSP which is the well known NP-hard problem. This new approach is based on the design of genetic operators with FLC through initializing the serial method which is superior for a large rcPSP scale. For solving these rcPSP problems, we first demonstrate that our hGA with FLC (flc-hGA) yields better results than several heuristic procedures presented in the literature. We have revealed a fact that flc-hGA has the evolutionary behaviors of average fitness better than hGA without FLC.
基金This paper was supported partly by the National Natural Science Foundation of China(No.52175449)partly by the National Key R&D Plan of China(No.2020YFB1712902).
文摘Smart manufacturing in the“Industry 4.0”strategy promotes the deep integration of manufacturing and information technologies,which makes the manufacturing system a ubiquitous environment.However,the real-time scheduling of such a manufacturing system is a challenge faced by many decision makers.To deal with this challenge,this study focuses on the real-time hybrid flow shop scheduling problem(HFSP).First,the characteristic of the hybrid flow shop in a smart manufacturing environment is analyzed,and its scheduling problem is described.Second,a real-time scheduling approach for the HFSP is proposed.The core module is to employ gene expression programming to construct a new and efficient scheduling rule according to the real-time status in the hybrid flow shop.With the scheduling rule,the priorities of the waiting job are calculated,and the job with the highest priority will be scheduled at this decision time point.A group of experiments are performed to prove the performance of the proposed approach.The numerical experiments show that the real-time scheduling approach outperforms other single-scheduling rules and the back-propagation neural network method in optimizing most objectives for different size instances.Therefore,the contribution of this study is the proposal of a real-time scheduling approach,which is an effective approach for real-time hybrid flow shop scheduling in a smart manufacturing environment.
文摘In this study,we considered a bi-objective,multi-project,multi-mode resource-constrained project scheduling problem.We adopted three objective pairs as combinations of the net present value(NPV)as a financial performance measure with one of the time-based performance measures,namely,makespan(Cmax),mean completion time(MCT),and mean flow time(MFT)(i.e.,minCmax/maxA^PF,minA/Cr/max7VPF,and min MFTI mdixNPV).We developed a hybrid non-dominated sorting genetic algorithm Ⅱ(hybrid-NSGA-Ⅱ)as a solution method by introducing a backward-forward pass(BFP)procedure and an injection procedure into NSGA-Ⅱ.The BFP was proposed for new population generation and post-processing.Then,an injection procedure was introduced to increase diversity.The BFP and injection procedures led to improved objective functional values.The injection procedure generated a significantly high number of non-dominated solutions,thereby resulting in great diversity.An extensive computational study was performed.Results showed that hybrid-NSGA-Ⅱ surpassed NSGA-Ⅱ in terms of the performance metrics hypervolume,maximum spread,and the number of nondominated solutions.Solutions were obtained for the objective pairs using hybrid-NSGA-Ⅱ and three different test problem sets with specific properties.Further analysis was performed by employing cash balance,which was another financial performance measure of practical importance.Several managerial insights and extensions for further research were presented.
基金Supported by the National Natural Science Foundation of China (60975050)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20070486081)
文摘This paper presents a new method to solve the resource-constrained project scheduling problem for software development. In this method,activity duration times are described as fuzzy variables and resource-constrained software project scheduling problems are described as fuzzy programming models. First,how to model the software project scheduling problem under the fuzzy environment conditions is proposed. Second,in order to satisfy the different requirements of decision-making,two novel fuzzy project scheduling models,expected cost model and credibility maximization model,are suggested. Third,a hybrid intelligent algorithm integrated by genetic algorithm and fuzzy simulation is designed to solve the above two fuzzy programming models. Numerical experiments illustrate the effectiveness of the hybrid intelligent algorithm.