In this paper,we propose a hybrid forecasting model to improve the forecasting accuracy for depth-averaged current velocities(DACVs) of underwater gliders.The hybrid model is based on a discrete wavelet transform(DWT)...In this paper,we propose a hybrid forecasting model to improve the forecasting accuracy for depth-averaged current velocities(DACVs) of underwater gliders.The hybrid model is based on a discrete wavelet transform(DWT),a deep belief network(DBN),and a least squares support vector machine(LSSVM).The original DACV series are first decomposed into several high-and one low-frequency subseries by DWT.Then,DBN is used for high-frequency component forecasting,and the LSSVM model is adopted for low-frequency subseries.The effectiveness of the proposed model is verified by two groups of DACV data from sea trials in the South China Sea.Based on four general error criteria,the forecast performance of the proposed model is demonstrated.The comparison models include some well-recognized single models and some related hybrid models.The performance of the proposed model outperformed those of the other methods indicated above.展开更多
There exists a great deal of periodic non-stationary processes in natural,social and eco- nomical phenomenon.It is very important to realize the dynamic analysis and real-time forecast within a period.In this letter,a...There exists a great deal of periodic non-stationary processes in natural,social and eco- nomical phenomenon.It is very important to realize the dynamic analysis and real-time forecast within a period.In this letter,a wavelet-Kalman hybrid estimation and forecasting algorithm based on step-by-step filtering with the real-time and recursion property is put forward.It combines the advantages of Kalman filter and wavelet transform.Utilizing the information provided by multi- sensor effectively,this algorithm can realize not only real-time tracking and dynamic multi-step fore- casting within a period,but also the dynamic forecasting between periods,and it has a great value to the system decision-making.Simulation results show that this algorithm is valuable.展开更多
Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network...Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.展开更多
The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This p...The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper.展开更多
In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The win...In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The wind-wave part of the proposed model has also been given. Now we proceed to discuss the swell part,the implementation of the model as a prediction method,mumerical experiments done with ideal wind fields and hindcasts made in the Bohai Sea,in the neighboring seas adjacent to China and in the Northwest Pacific.展开更多
Intelligent systems and methods such as the neural network (NN) are usually used in electric power systems for short-term electrical load forecasting. However, a vast amount of electrical load data is often redundan...Intelligent systems and methods such as the neural network (NN) are usually used in electric power systems for short-term electrical load forecasting. However, a vast amount of electrical load data is often redundant, and linearly or nonlinearly correlated with each other. Highly correlated input data can result in erroneous prediction results given out by an NN model. Besides this, the determination of the topological structure of an NN model has always been a problem for designers. This paper presents a new artificial intelligence hybrid procedure for next day electric load forecasting based on partial least squares (PLS) and NN. PLS is used for the compression of data input space, and helps to determine the structure of the NN model. The hybrid PLS-NN model can be used to predict hourly electric load on weekdays and weekends. The advantage of this methodology is that the hybrid model can provide faster convergence and more precise prediction results in comparison with abductive networks algorithm. Extensive testing on the electrical load data of the Puget power utility in the USA confirms the validity of the proposed approach.展开更多
Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support ...Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data.展开更多
基金The National Natural Science Foundation of China under contract Nos U1709202 and 51809127the Natural Science Foundation of Shanxi ProvinceChina under contract No.201901D211248。
文摘In this paper,we propose a hybrid forecasting model to improve the forecasting accuracy for depth-averaged current velocities(DACVs) of underwater gliders.The hybrid model is based on a discrete wavelet transform(DWT),a deep belief network(DBN),and a least squares support vector machine(LSSVM).The original DACV series are first decomposed into several high-and one low-frequency subseries by DWT.Then,DBN is used for high-frequency component forecasting,and the LSSVM model is adopted for low-frequency subseries.The effectiveness of the proposed model is verified by two groups of DACV data from sea trials in the South China Sea.Based on four general error criteria,the forecast performance of the proposed model is demonstrated.The comparison models include some well-recognized single models and some related hybrid models.The performance of the proposed model outperformed those of the other methods indicated above.
基金Supported by the National Natural Science Foundation of China (No.60434020,60572051)International Cooperative Project Foundation (0446650006)Ministry of Education Science Foundation (205092).
文摘There exists a great deal of periodic non-stationary processes in natural,social and eco- nomical phenomenon.It is very important to realize the dynamic analysis and real-time forecast within a period.In this letter,a wavelet-Kalman hybrid estimation and forecasting algorithm based on step-by-step filtering with the real-time and recursion property is put forward.It combines the advantages of Kalman filter and wavelet transform.Utilizing the information provided by multi- sensor effectively,this algorithm can realize not only real-time tracking and dynamic multi-step fore- casting within a period,but also the dynamic forecasting between periods,and it has a great value to the system decision-making.Simulation results show that this algorithm is valuable.
基金supported by the National Key Research and Development Program on Monitoring,Early Warning and Prevention of Major Natural Disasters [grant number 2018YFC1506006]the National Natural Science Foundation of China [grant numbers 41805054 and U20A2097]。
文摘Rainstorms are one of the most important types of natural disaster in China.In order to enhance the ability to forecast rainstorms in the short term,this paper explores how to combine a back-propagation neural network(BPNN)with synoptic diagnosis for predicting rainstorms,and analyzes the hit rates of rainstorms for the above two methods using the county of Tianquan as a case study.Results showed that the traditional synoptic diagnosis method still has an important referential meaning for most rainstorm types through synoptic typing and statistics of physical quantities based on historical cases,and the threat score(TS)of rainstorms was more than 0.75.However,the accuracy for two rainstorm types influenced by low-level easterly inverted troughs was less than 40%.The BPNN method efficiently forecasted these two rainstorm types;the TS and equitable threat score(ETS)of rainstorms were 0.80 and 0.79,respectively.The TS and ETS of the hybrid model that combined the BPNN and synoptic diagnosis methods exceeded the forecast score of multi-numerical simulations over the Sichuan Basin without exception.This kind of hybrid model enhanced the forecasting accuracy of rainstorms.The findings of this study provide certain reference value for the future development of refined forecast models with local features.
文摘The authors make an endeavor to explain why a new hybrid wave model is here proposed when several such models have already been in operation and the so- called third generation wave modej is proving attractive. This part of the paper is devoted to the wind wave model. Both deep and shallow water models have been developed, the former being actually a special case of the latter when water depth is great. The deep water model is exceptionally simple in form. Significant wave height is the only prognostic variable. In comparison with the usual methods to compute the energy input and dissipations empirically or by 'tuning', the proposed model has the merit that the effects of all source terms are combined into one term which is computed through empirical growth relations for significant waves, these relations being, relatively speaking, easier and more reliable to obtain than those for the source terms in the spectral energy balance equation. The discrete part of the model and the implementation of the model as a whole will be discussed in the second part of the present paper.
文摘In the first part of the present paper we have explained why we manage to formulate another wave prediction model when so many of them, including the so-called third generation model, have already been in use. The wind-wave part of the proposed model has also been given. Now we proceed to discuss the swell part,the implementation of the model as a prediction method,mumerical experiments done with ideal wind fields and hindcasts made in the Bohai Sea,in the neighboring seas adjacent to China and in the Northwest Pacific.
文摘Intelligent systems and methods such as the neural network (NN) are usually used in electric power systems for short-term electrical load forecasting. However, a vast amount of electrical load data is often redundant, and linearly or nonlinearly correlated with each other. Highly correlated input data can result in erroneous prediction results given out by an NN model. Besides this, the determination of the topological structure of an NN model has always been a problem for designers. This paper presents a new artificial intelligence hybrid procedure for next day electric load forecasting based on partial least squares (PLS) and NN. PLS is used for the compression of data input space, and helps to determine the structure of the NN model. The hybrid PLS-NN model can be used to predict hourly electric load on weekdays and weekends. The advantage of this methodology is that the hybrid model can provide faster convergence and more precise prediction results in comparison with abductive networks algorithm. Extensive testing on the electrical load data of the Puget power utility in the USA confirms the validity of the proposed approach.
基金supported by the National Science Fund for Distinguished Young Scholars under Grant No.71025005the National Natural Science Foundation of China under Grant Nos.91224001 and 71301006+1 种基金National Program for Support of Top-Notch Young Professionalsthe Fundamental Research Funds for the Central Universities in BUCT
文摘Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data.