This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrog...This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.展开更多
The development of highly efficient energy conversion technologies to extract energy from wastewater is urgently needed,especially in facing of increasing energy and environment burdens.Here,we successfully fabricated...The development of highly efficient energy conversion technologies to extract energy from wastewater is urgently needed,especially in facing of increasing energy and environment burdens.Here,we successfully fabricated a novel hybrid fuel cell with BiOCl-NH_(4)PTA as photocatalyst.The polyoxometalate(NH_(4)PTA)act as the acceptor of photoelectrons and could retard the recombination of photogenerated electrons and holes,which lead to superior photocatalytic degradation.By utilizing BiOCl-NH_(4)PTA as photocatalysts and Pt/C air-cathode,we successfully constructed an electron and mass transfer enhanced photocatalytic hybrid fuel cell with flow-through field(F-HFC).In this novel fuel cell,dyes and biomass could be directly degraded and stable power output could be obtained.About 87%of dyes could be degraded in 30 min irradiation and nearly 100%removed within 90 min.The current density could reach up to~267.1μA/cm^(2);with maximum power density(Pmax)of~16.2μW/cm^(2) with Rhodamine B as organic pollutant in F-HFC.The power densities were 9.0μW/cm^(2),12.2μW/cm^(2),and 13.9μW/cm^(2) when using methyl orange(MO),glucose and starch as substrates,respectively.This hybrid fuel cell with BiOCl-NH_(4)PTA composite fulfills the purpose of decontamination of aqueous organic pollutants and synchronous electricity generation.Moreover,the novel design cell with separated photodegradation unit and the electricity generation unit could bring potential practical application in water purification and energy recovery from wastewater.展开更多
Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem rela...Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.展开更多
Environmental pollution and declining resources of fossil fuels in recent years,have increased demand for better fuel economy and less pollution for ground transportation.Among the alternative solutions provided by re...Environmental pollution and declining resources of fossil fuels in recent years,have increased demand for better fuel economy and less pollution for ground transportation.Among the alternative solutions provided by researchers in recent decades,hybrid electric vehicles consisted of an internal combustion engine and an electric motor have been considered as a promising solution in the short-term.In the present study,fuel economy characteristics of a parallel hybrid electric vehicle are investigated by using numerical simulation.The simulation methodology is based on a fast forward facing simulation model of a parallel hybrid and an internal combustion engine powertrains.The objective of this study is to present the main parameters which result in an optimum combination of hybrid powertrain components in order to obtain a better fuel economy of hybrid powertrains regarding different driven cycles and hybridization factors.Then,the fuel consumption of the parallel hybrid electric vehicles are compared considering various driven cycles and hybridization factors.The results showed that the better fuel economy of hybrid powertrains increases by decreasing average load of the test cycle and the point of the best fuel economy for a particular average load of the cycle moves towards higher hybridization factors when the average load of the test cycle is reduced.展开更多
Various types of energy exist everywhere around us,and these energies can be harvested from multiple sources to power micro-/nanoelectronic system and even personal electronic products.In this work,we proposed a hybri...Various types of energy exist everywhere around us,and these energies can be harvested from multiple sources to power micro-/nanoelectronic system and even personal electronic products.In this work,we proposed a hybrid energy-harvesting system(HEHS)for potential in vivo applications.The HEHS consisted of a triboelectric nanogenerator and a glucose fuel cell for simultaneously harvesting biomechanical energy and biochemical energy in simulated body fluid.These two energy-harvesting units can work individually as a single power source or work simultaneously as an integrated system.This design strengthened the flexibility of harvesting multiple energies and enhanced corresponding electric output.Compared with any individual device,the integrated HEHS outputs a superimposed current and has a faster charging rate.Using the harvested energy,HEHS can power a calculator or a green light-emitting diode pattern.Considering the widely existed biomechanical energy and glucose molecules in the body,the developed HEHS can be a promising candidate for building in vivo self-powered healthcare monitoring system.展开更多
Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter)...Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.展开更多
A monolithic hybrid fuel cell (MHFC) with a novel configuration was proposed in an effort to improve the fuel cell performance during instantaneous power changes. A modified direct methanol fuel cell (DMFC) with a lay...A monolithic hybrid fuel cell (MHFC) with a novel configuration was proposed in an effort to improve the fuel cell performance during instantaneous power changes. A modified direct methanol fuel cell (DMFC) with a layer of hydrous ruthenium dioxide (RuO2·xH2O) sandwiched between the anode catalyst layer and membrane was used to demonstrate the principle of the MHFC. Experimental results indicate that the RuO2·xH2O layer is equivalent to a resistor-capacitor transmission line and functions similar to a capacitor in parallel with the anode electrode. The improvement in dynamic response of the MHFC was experimentally confirmed under step current change and square current pulse operating. The ionic conductivity of the RuO2·xH2O layer was also obtained.展开更多
Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the v...Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the vehicle scheme and its improved duel-spring flexible suspension design are described. Then, its fuel consumption model is proposed accordingly with respect to two vehicle operating parameters. Aiming at minimizing the fuel consumption, two Genetic Algorithms (GAs) are designed and implemented. For the initial one (GA-1), despite getting an acceptable result, there still existed some problems in its optimiza- tion process. Based on an analysis of the defects of GA-1, an improved algorithm GA-2 was developed whose effectiveness and stability were embodied in the optimization process and results. The proposed design scheme and optimization approaches can provide valuable references for this new kind of vehicle with industry, military or scientific exploitations, etc. promising applications in the areas of agriculture, petroleum industry, military or scientific explaitations, etc.展开更多
By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hind...By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.展开更多
Fuel costs are a significant portion of transit agency budgets. Hybrid technology offers an attractive option and has the potential to significantly reduce operating costs for agencies. The main impetus behind use of ...Fuel costs are a significant portion of transit agency budgets. Hybrid technology offers an attractive option and has the potential to significantly reduce operating costs for agencies. The main impetus behind use of hybrid transit vehicles is fuel savings and reduced emissions. Laboratory tests have indicated that hybrid transit buses can have significantly higher fuel economy and lower emissions compared to conventional transit buses. However, the number of studies is limited and laboratory tests may not represent actual driving conditions since in-use vehicle operation differs from laboratory test cycles. Several initial studies have suggested that the fuel economy savings reported in laboratory tests may not be realized on-road. The objective of the project described in this paper was to evaluate the in-use fuel economy differences between hybrid-electric and conventional transit buses for the Ames, Iowa (USA) transit authority. On-road fuel economy was evaluated over a 12-month period for 12 hybrid and 7 control transit buses. Fuel economy comparisons were also provided for several older in-use bus types. Buses other than the control and hybrid buses were grouped by model year corresponding to US diesel emission standards. Average fuel economy in miles per gallon was calculated for each bus group overall and by season. Hybrid buses had the highest fuel economy for all time periods for all bus types. Hybrid buses had a fuel economy that was 11.8% higher than control buses overall and was 12.2% higher than buses with model years 2007 and higher, 23.4% higher than model years 2004 to 2006, 10.2% higher than model years 1998 to 2003, 38.1% higher than for model years 1994 to 1997, 36.8% higher for model years 1991 to 1993, and 36.8% higher for model years pre-1991. Differences between groups of buses also varied by season of the year.展开更多
The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,...The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,which combines the advantages of mechanism model and black-box model,is proposed in this paper.To improve the performance,the static neural network and variable neural network are used to build the black-box model.The static neural network can significantly improve the static performance of the hybrid model,and the variable neural network makes the hybrid dynamic model predict the real PEM fuel cell behavior with required accuracy.Finally,the hybrid dynamic model is validated with a 500 W PEM fuel cell.The static and transient experiment results show that the hybrid dynamic model can predict the behavior of the fuel cell stack accurately and therefore can be effectively utilized in practical application.展开更多
Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and...Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and fuel cell in the recent years. This paper describes dynamic modeling and simulation results of a small wind-photovoltaic-fuel cell hybrid energy system. The hybrid system consists of a 500 W wind turbine, a photovoltaic, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, a boost converter, controllers and a power converter that simulated using MATLAB solver. This kind of hybrid system is completely stand-alone, reliable and has high efficiency. In order to minimize sudden variations in voltage magnitude ultracapacitors are proposed. Power converter and inverter are used to produce ac output power. Dynamics of fuel-cell component such as double layer capacitance are also taken into account. Control scheme of fuel-cell flow controller and voltage regulators are based on PID controllers. Dynamic responses of the system for a step change in the electrical load and wind speed are presented. Results showed that the ability of the system in adapting itself to sudden changes and new conditions. Combination of PV and wind renewable sources is made the advantage of using this system in regions which have higher wind speeds in the seasons that suffers from less sunny days and vice versa.展开更多
文摘This paper introduced the design of the hybrid powertrain of the Fuel Cell City Bus demonstrated in 2008 Beijing Olympic Games. The configuration of the hybrid fuel cell powertrain was introduced. The safety of hydrogen storage and delivery system, the hydrogen leakage alarm system were developed. The real-time distributed control and diagnosis system based on the Time Trigger Controller Area Network (TTCAN) with 10 ms basic control period was developed. The concept and implementation of processor (or controller) monitor and process (or task) monitor technique based on the TYCAN were applied in this paper. The fault tolerant control algorithm of the fuel cell engine and the battery man- agement system were considered. The demonstration experience verified that the fault tolerant control was very important for the fuel cell city bus.
基金supported by the National Natural Science Foundation of China(Nos.51738013,52022048 and 51978371)the Excellent Innovation Project of Research Center for EcoEnvironmental Sciences(No.CAS RCEES-EEI-2019-02).
文摘The development of highly efficient energy conversion technologies to extract energy from wastewater is urgently needed,especially in facing of increasing energy and environment burdens.Here,we successfully fabricated a novel hybrid fuel cell with BiOCl-NH_(4)PTA as photocatalyst.The polyoxometalate(NH_(4)PTA)act as the acceptor of photoelectrons and could retard the recombination of photogenerated electrons and holes,which lead to superior photocatalytic degradation.By utilizing BiOCl-NH_(4)PTA as photocatalysts and Pt/C air-cathode,we successfully constructed an electron and mass transfer enhanced photocatalytic hybrid fuel cell with flow-through field(F-HFC).In this novel fuel cell,dyes and biomass could be directly degraded and stable power output could be obtained.About 87%of dyes could be degraded in 30 min irradiation and nearly 100%removed within 90 min.The current density could reach up to~267.1μA/cm^(2);with maximum power density(Pmax)of~16.2μW/cm^(2) with Rhodamine B as organic pollutant in F-HFC.The power densities were 9.0μW/cm^(2),12.2μW/cm^(2),and 13.9μW/cm^(2) when using methyl orange(MO),glucose and starch as substrates,respectively.This hybrid fuel cell with BiOCl-NH_(4)PTA composite fulfills the purpose of decontamination of aqueous organic pollutants and synchronous electricity generation.Moreover,the novel design cell with separated photodegradation unit and the electricity generation unit could bring potential practical application in water purification and energy recovery from wastewater.
基金This work was supported by the Key Research and Development Program of Shandong Province(Grant No.2019JZZY010912)the Key Research and Development Program of Shandong Province(Grant No.2020CXGC010406)。
文摘Fuel cell hybrid electric vehicles are currently being considered as ideal means to solve the energy crisis and global warming in today’s society.In this context,this paper proposes a method to solve the problem related to the dependence of the so-called optimal equivalent factor(determined in the framework of the equivalent consumption minimum strategy-ECMS)on the working conditions.The simulation results show that under typical conditions(some representative cities being considered),the proposed strategy can maintain the power balance;for different initial battery’s states of charge(SOC),after the SOC stabilizes,the fuel consumption is 5.25 L/100 km.
文摘Environmental pollution and declining resources of fossil fuels in recent years,have increased demand for better fuel economy and less pollution for ground transportation.Among the alternative solutions provided by researchers in recent decades,hybrid electric vehicles consisted of an internal combustion engine and an electric motor have been considered as a promising solution in the short-term.In the present study,fuel economy characteristics of a parallel hybrid electric vehicle are investigated by using numerical simulation.The simulation methodology is based on a fast forward facing simulation model of a parallel hybrid and an internal combustion engine powertrains.The objective of this study is to present the main parameters which result in an optimum combination of hybrid powertrain components in order to obtain a better fuel economy of hybrid powertrains regarding different driven cycles and hybridization factors.Then,the fuel consumption of the parallel hybrid electric vehicles are compared considering various driven cycles and hybridization factors.The results showed that the better fuel economy of hybrid powertrains increases by decreasing average load of the test cycle and the point of the best fuel economy for a particular average load of the cycle moves towards higher hybridization factors when the average load of the test cycle is reduced.
基金support of National Key R&D Project from Minister of Science and Technology,China(2016YFA0202703)National Natural Science Foundation of China(Nos.61875015,31571006,81601629,21801019,and 11421202)+3 种基金the 111 Project(Project No.B13003)the Beijing Natural Science Foundation(2182091)Wuhan Municipal Science and Technology Bureau(Grant No.2017060201010166)the National Youth Talent Support Program
文摘Various types of energy exist everywhere around us,and these energies can be harvested from multiple sources to power micro-/nanoelectronic system and even personal electronic products.In this work,we proposed a hybrid energy-harvesting system(HEHS)for potential in vivo applications.The HEHS consisted of a triboelectric nanogenerator and a glucose fuel cell for simultaneously harvesting biomechanical energy and biochemical energy in simulated body fluid.These two energy-harvesting units can work individually as a single power source or work simultaneously as an integrated system.This design strengthened the flexibility of harvesting multiple energies and enhanced corresponding electric output.Compared with any individual device,the integrated HEHS outputs a superimposed current and has a faster charging rate.Using the harvested energy,HEHS can power a calculator or a green light-emitting diode pattern.Considering the widely existed biomechanical energy and glucose molecules in the body,the developed HEHS can be a promising candidate for building in vivo self-powered healthcare monitoring system.
基金Funded by National Natural Science Foundation of China(No.51305472)National Natural Science Foundation of Chongqing Science and Technology Committee(No.cstc2014jcyj A60005)Natural Science Foundation of Chongqing Education Committee(No.KJ1400312)
文摘Aiming to reduce fuel consumption and emissions of a dual-clutch hybrid electric vehicle during cold start, multiobjective optimization for fuel consumption and HC/CO emission from a TWC(three-way catalytic converter) outlet is presented in this paper. DP(dynamic programming) considering dual-state variables is proposed based on the Bellman optimality principle. Both the battery SOC(state of charge) and the temperature of TWC monolith are considered in the algorithm simultaneously. In this way the global optimal control strategy and the Pareto optimal solution of multi-objective function are derived. Simulation results show that the proposed method is able to promote the TWC light-off significantly by decreasing the engine's load and improving exhaust temperature from the outlet of the engine, in comparison with original DP considering the single battery SOC. Compared to the results achieved by rule-based control strategy, fuel economy and emission of TWC outlet for cold start are optimized comprehensively. Each indicator of Pareto solution set shows the significant improvement.
文摘A monolithic hybrid fuel cell (MHFC) with a novel configuration was proposed in an effort to improve the fuel cell performance during instantaneous power changes. A modified direct methanol fuel cell (DMFC) with a layer of hydrous ruthenium dioxide (RuO2·xH2O) sandwiched between the anode catalyst layer and membrane was used to demonstrate the principle of the MHFC. Experimental results indicate that the RuO2·xH2O layer is equivalent to a resistor-capacitor transmission line and functions similar to a capacitor in parallel with the anode electrode. The improvement in dynamic response of the MHFC was experimentally confirmed under step current change and square current pulse operating. The ionic conductivity of the RuO2·xH2O layer was also obtained.
文摘Based on a bionic concept and combing air-cushion techniques and track driving mechanisms, a novel semi-floating hybrid concept vehicle is proposed to meet the transportation requirements on soft terrain. First, the vehicle scheme and its improved duel-spring flexible suspension design are described. Then, its fuel consumption model is proposed accordingly with respect to two vehicle operating parameters. Aiming at minimizing the fuel consumption, two Genetic Algorithms (GAs) are designed and implemented. For the initial one (GA-1), despite getting an acceptable result, there still existed some problems in its optimiza- tion process. Based on an analysis of the defects of GA-1, an improved algorithm GA-2 was developed whose effectiveness and stability were embodied in the optimization process and results. The proposed design scheme and optimization approaches can provide valuable references for this new kind of vehicle with industry, military or scientific exploitations, etc. promising applications in the areas of agriculture, petroleum industry, military or scientific explaitations, etc.
基金supported by General Motors (Low-cost Hybrid Electric Propulsion System)
文摘By using high-power and high-efficiency propulsion systems,current hybrid electric vehicles(HEVs) in market can achieve excellent fuel economy and kinetic performance.However,it is the cost of current HEVs that hinders HEVs coming into widespread use.A novel hybrid electric propulsion system is designed to balance HEV cost and performance for developing markets.A battery/supercapacitor-based hybrid energy storage system(HESS) is used to improve energy conversion efficiency and reduce battery size and cost.An all-in-one-controller(AIOC) which integrates engine electronic control unit(ECU),motor ECU,and HESS management system is developed to save materials and energy,and reduce the influence of distribution parameters on circuit.As for the powertrain configuration,four schemes are presented:belt-driven starter generator(BSG) scheme,four-wheel drive HEV scheme,full HEV scheme,and ranger-extender electric vehicle(EV) scheme.Component selection and parameter matching for the propulsion system are performed,and an energy management strategy is developed based on powertrain configuration and selected components.Forward-facing simulation models are built,comprehending the control strategy based on the optimal engine torque for the low-cost hybrid electric propulsion system.Co-simulation of AVL CRUISE and Matlab/Simulink is presented and the best scheme is selected.The simulation results indicate that,for the best design,fuel consumption in urban driving condition is 4.11 L/(100 km) and 0-50 km/h accelerating time is 10.95 s.The proposed research can realize low-cost concept for HEV while achieving satisfactory fuel economy and kinetic performance,and help to improve commercialization of HEVs.
文摘Fuel costs are a significant portion of transit agency budgets. Hybrid technology offers an attractive option and has the potential to significantly reduce operating costs for agencies. The main impetus behind use of hybrid transit vehicles is fuel savings and reduced emissions. Laboratory tests have indicated that hybrid transit buses can have significantly higher fuel economy and lower emissions compared to conventional transit buses. However, the number of studies is limited and laboratory tests may not represent actual driving conditions since in-use vehicle operation differs from laboratory test cycles. Several initial studies have suggested that the fuel economy savings reported in laboratory tests may not be realized on-road. The objective of the project described in this paper was to evaluate the in-use fuel economy differences between hybrid-electric and conventional transit buses for the Ames, Iowa (USA) transit authority. On-road fuel economy was evaluated over a 12-month period for 12 hybrid and 7 control transit buses. Fuel economy comparisons were also provided for several older in-use bus types. Buses other than the control and hybrid buses were grouped by model year corresponding to US diesel emission standards. Average fuel economy in miles per gallon was calculated for each bus group overall and by season. Hybrid buses had the highest fuel economy for all time periods for all bus types. Hybrid buses had a fuel economy that was 11.8% higher than control buses overall and was 12.2% higher than buses with model years 2007 and higher, 23.4% higher than model years 2004 to 2006, 10.2% higher than model years 1998 to 2003, 38.1% higher than for model years 1994 to 1997, 36.8% higher for model years 1991 to 1993, and 36.8% higher for model years pre-1991. Differences between groups of buses also varied by season of the year.
基金Supported by the National Science Fund for Distinguished Young Scholars of China (60925011)
文摘The polymer electrolyte membrane(PEM) fuel cell has been regarded as a potential alternative power source,and a model is necessary for its design,control and power management.A hybrid dynamic model of PEM fuel cell,which combines the advantages of mechanism model and black-box model,is proposed in this paper.To improve the performance,the static neural network and variable neural network are used to build the black-box model.The static neural network can significantly improve the static performance of the hybrid model,and the variable neural network makes the hybrid dynamic model predict the real PEM fuel cell behavior with required accuracy.Finally,the hybrid dynamic model is validated with a 500 W PEM fuel cell.The static and transient experiment results show that the hybrid dynamic model can predict the behavior of the fuel cell stack accurately and therefore can be effectively utilized in practical application.
文摘Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and fuel cell in the recent years. This paper describes dynamic modeling and simulation results of a small wind-photovoltaic-fuel cell hybrid energy system. The hybrid system consists of a 500 W wind turbine, a photovoltaic, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, a boost converter, controllers and a power converter that simulated using MATLAB solver. This kind of hybrid system is completely stand-alone, reliable and has high efficiency. In order to minimize sudden variations in voltage magnitude ultracapacitors are proposed. Power converter and inverter are used to produce ac output power. Dynamics of fuel-cell component such as double layer capacitance are also taken into account. Control scheme of fuel-cell flow controller and voltage regulators are based on PID controllers. Dynamic responses of the system for a step change in the electrical load and wind speed are presented. Results showed that the ability of the system in adapting itself to sudden changes and new conditions. Combination of PV and wind renewable sources is made the advantage of using this system in regions which have higher wind speeds in the seasons that suffers from less sunny days and vice versa.