期刊文献+
共找到902篇文章
< 1 2 46 >
每页显示 20 50 100
Power Line Communications Networking Method Based on Hybrid Ant Colony and Genetic Algorithm
1
作者 Qianghui Xiao Huan Jin Xueyi Zhang 《Engineering(科研)》 2020年第8期581-590,共10页
When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristi... When solving the routing problem with traditional ant colony algorithm, there is scarce in initialize pheromone and a slow convergence and stagnation for the complex network topology and the time-varying characteristics of channel in power line carrier communication of low voltage distribution grid. The algorithm is easy to fall into premature and local optimization. Proposed an automatic network algorithm based on improved transmission delay and the load factor as the evaluation factors. With the requirements of QoS, a logical topology of power line communication network is established. By the experiment of MATLAB simulation, verify that the improved Dynamic hybrid ant colony genetic algorithm (DH_ACGA) algorithm has improved the communication performance, which solved the QoS routing problems of power communication to some extent. 展开更多
关键词 Power Line Carrier Communication Network Quality of Service hybrid ant colony and genetic algorithm
下载PDF
New Hybrid Algorithm Based on BicriterionAnt for Solving Multiobjective Green Vehicle Routing Problem
2
作者 Emile Nawej Kayij Joél Lema Makubikua Justin Dupar Kampempe Busili 《American Journal of Operations Research》 2023年第3期33-52,共20页
The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as fol... The main objective of this paper is to propose a new hybrid algorithm for solving the Bi objective green vehicle routing problem (BGVRP) from the BicriterionAnt metaheuristic. The methodology used is subdivided as follows: first, we introduce data from the GVRP or instances from the literature. Second, we use the first cluster route second technique using the k-means algorithm, then we apply the BicriterionAntAPE (BicriterionAnt Adjacent Pairwise Exchange) algorithm to each cluster obtained. And finally, we make a comparative analysis of the results obtained by the case study as well as instances from the literature with some existing metaheuristics NSGA, SPEA, BicriterionAnt in order to see the performance of the new hybrid algorithm. The results show that the routes which minimize the total distance traveled by the vehicles are different from those which minimize the CO<sub>2</sub> pollution, which can be understood by the fact that the objectives are conflicting. In this study, we also find that the optimal route reduces product CO<sub>2</sub> by almost 7.2% compared to the worst route. 展开更多
关键词 Metaheuristics Green Vehicle Routing Problem ant colony algorithm genetic algorithms Green Logistics
下载PDF
Improved Ant Colony-Genetic Algorithm for Information Transmission Path Optimization in Remanufacturing Service System 被引量:7
3
作者 Lei Wang Xu-Hui Xia +2 位作者 Jian-Hua Cao Xiang Liu Jun-Wei Liu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第6期106-117,共12页
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ... The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss. 展开更多
关键词 Remanufacturing service Information transmission Path optimization ant colony algorithm genetic algorithm
下载PDF
Ant colony algorithm based on genetic method for continuous optimization problem 被引量:1
4
作者 朱经纬 蒙培生 王乘 《Journal of Shanghai University(English Edition)》 CAS 2007年第6期597-602,共6页
A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of componen... A new algorithm is presented by using the ant colony algorithm based on genetic method (ACG) to solve the continuous optimization problem. Each component has a seed set. The seed in the set has the value of component, trail information and fitness. The ant chooses a seed from the seed set with the possibility determined by trail information and fitness of the seed. The genetic method is used to form new solutions from the solutions got by the ants. Best solutions are selected to update the seeds in the sets and trail information of the seeds. In updating the trail information, a diffusion function is used to achieve the diffuseness of trail information. The new algorithm is tested with 8 different benchmark functions. 展开更多
关键词 ant colony algorithm genetic method diffusion function continuous optimization problem.
下载PDF
Electro-Hydraulic Servo System Identification of Continuous Rotary Motor Based on the Integration Algorithm of Genetic Algorithm and Ant Colony Optimization 被引量:1
5
作者 王晓晶 李建英 +1 位作者 李平 修立威 《Journal of Donghua University(English Edition)》 EI CAS 2012年第5期428-433,共6页
In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which ... In order to increase the robust performance of electro-hydraulic servo system, the system transfer function was identified by the intergration algorithm of genetic algorithm and ant colony optimization(GA-ACO), which was based on standard genetic algorithm and combined with positive feedback mechanism of ant colony algorithm. This method can obtain the precise mathematic model of continuous rotary motor which determines the order of servo system. Firstly, by constructing an appropriate fitness function, the problem of system parameters identification is converted into the problem of system parameter optimization. Secondly, in the given upper and lower bounds a set of optimal parameters are selected to meet the best approximation of the actual system. And the result shows that the identification output can trace the sampling output of actual system, and the error is very small. In addition, another set of experimental data are used to test the identification result. The result shows that the identification parameters can approach the actual system. The experimental results verify the feasibility of this method. And it is fit for the parameter identification of general complex system using the integration algorithm of GA-ACO. 展开更多
关键词 continuous rotary motor system identification genetic algorithm and ant colony optimization (GA-ACO) algorithm
下载PDF
Ant Colony Optimization Approach Based Genetic Algorithms for Multiobjective Optimal Power Flow Problem under Fuzziness
6
作者 Abd Allah A. Galal Abd Allah A. Mousa Bekheet N. Al-Matrafi 《Applied Mathematics》 2013年第4期595-603,共9页
In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, ... In this paper, a new optimization system based genetic algorithm is presented. Our approach integrates the merits of both ant colony optimization and genetic algorithm and it has two characteristic features. Firstly, since there is instabilities in the global market, implications of global financial crisis and the rapid fluctuations of prices, a fuzzy representation of the optimal power flow problem has been defined, where the input data involve many parameters whose possible values may be assigned by the expert. Secondly, by enhancing ant colony optimization through genetic algorithm, a strong robustness and more effectively algorithm was created. Also, stable Pareto set of solutions has been detected, where in a practical sense only Pareto optimal solutions that are stable are of interest since there are always uncertainties associated with efficiency data. The results on the standard IEEE systems demonstrate the capabilities of the proposed approach to generate true and well-distributed Pareto optimal nondominated solutions of the multiobjective OPF. 展开更多
关键词 ant colony genetic algorithm Fuzzy NUMBERS OPTIMAL Power Flow
下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
7
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis OPTIMIZATION Particle Swarm INTELLIGENCE (PSO) ant colony OPTIMIZATION (ACO) genetic algorithm (GA)
下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
8
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
下载PDF
Improved ant colony optimization for multi-depot heterogeneous vehicle routing problem with soft time windows 被引量:10
9
作者 汤雅连 蔡延光 杨期江 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期94-99,共6页
Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a ... Considering that the vehicle routing problem (VRP) with many extended features is widely used in actual life, such as multi-depot, heterogeneous types of vehicles, customer service priority and time windows etc., a mathematical model for multi-depot heterogeneous vehicle routing problem with soft time windows (MDHVRPSTW) is established. An improved ant colony optimization (IACO) is proposed for solving this model. First, MDHVRPSTW is transferred into different groups according to the nearest principle, and then the initial route is constructed by the scanning algorithm (SA). Secondly, genetic operators are introduced, and crossover probability and mutation probability are adaptively adjusted in order to improve the global search ability of the algorithm. Moreover, the smooth mechanism is used to improve the performance of the ant colony optimization (ACO). Finally, the 3-opt strategy is used to improve the local search ability. The proposed IACO was tested on three new instances that were generated randomly. The experimental results show that IACO is superior to the other three existing algorithms in terms of convergence speed and solution quality. Thus, the proposed method is effective and feasible, and the proposed model is meaningful. 展开更多
关键词 vehicle routing problem soft time window improved ant colony optimization customer service priority genetic algorithm
下载PDF
Traveling Salesman Problem Using an Enhanced Hybrid Swarm Optimization Algorithm 被引量:2
10
作者 郑建国 伍大清 周亮 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期362-367,共6页
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ... The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms. 展开更多
关键词 particle SWARM optimization(PSO) ant colony optimization(ACO) SWARM intelligence TRAVELING SALESMAN problem(TSP) hybrid algorithm
下载PDF
Genetic algorithm for short-term scheduling of make-and-pack batch production process 被引量:1
11
作者 Wuthichai Wongthatsanekorn Busaba Phruksaphanrat 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2015年第9期1475-1483,共9页
This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage ti... This paper considers a scheduling problem in industrial make-and-pack batch production process. This process equips with sequence-dependent changeover time, multipurpose storage units with limited capacity, storage time, batch splitting, partial equipment connectivity and transfer time. The objective is to make a production plan to satisfy all constraints while meeting demand requirement of packed products from various product families. This problem is NP-hard and the problem size is exponentially large for a realistic-sized problem. Therefore,we propose a genetic algorithm to handle this problem. Solutions to the problems are represented by chromosomes of product family sequences. These sequences are decoded to assign the resource for producing packed products according to forward assignment strategy and resource selection rules. These techniques greatly reduce unnecessary search space and improve search speed. In addition, design of experiment is carefully utilized to determine appropriate parameter settings. Ant colony optimization and Tabu search are also implemented for comparison. At the end of each heuristics, local search is applied for the packed product sequence to improve makespan. In an experimental analysis, all heuristics show the capability to solve large instances within reasonable computational time. In all problem instances, genetic algorithm averagely outperforms ant colony optimization and Tabu search with slightly longer computational time. 展开更多
关键词 genetic algorithm ant colony optimization Tabu search Batch scheduling Make-and-pack production Forward assignment strategy
下载PDF
A Hybrid Task Scheduling Algorithm in Grid
12
作者 张艳梅 曹怀虎 余镇危 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期84-86,92,共4页
Task scheduling in Grid has been proved to be NP-complete problem. In this paper, to solve this problem, a Hybrid Task Scheduling Algorithm in Grid (HTS) has been presented, which joint the advantages of Ant Colony an... Task scheduling in Grid has been proved to be NP-complete problem. In this paper, to solve this problem, a Hybrid Task Scheduling Algorithm in Grid (HTS) has been presented, which joint the advantages of Ant Colony and Genetic Algorithm. Compared with the related work, the result shows that the HTS algorithm significantly surpasses the previous approaches in schedule length ratio and speedup. 展开更多
关键词 task graph genetic algorithm ant colony task scheduling heterogeneous system.
下载PDF
遗传-蚁群算法在高性能计算任务调度中的应用 被引量:3
13
作者 田智慧 张帅永 高需 《计算机应用与软件》 北大核心 2024年第3期253-257,共5页
针对目前高性能计算任务调度策略利用率低、负载不均衡等问题,设计一种基于遗传-蚁群算法的高性能计算任务调度算法(GA-ACO)。GA-ACO分为两个阶段,第一阶段通过遗传算法缩小空间快速搜索到优秀解,紧接着将其转化为蚁群算法的初始信息素... 针对目前高性能计算任务调度策略利用率低、负载不均衡等问题,设计一种基于遗传-蚁群算法的高性能计算任务调度算法(GA-ACO)。GA-ACO分为两个阶段,第一阶段通过遗传算法缩小空间快速搜索到优秀解,紧接着将其转化为蚁群算法的初始信息素;第二阶段提出一种基于蚁群信息素的全局更新策略对收敛速度做出优化。实验分析表明,与蚁群算法和遗传算法相比,该算法缩短了任务完成时间,降低了节点负载率。 展开更多
关键词 高性能计算 任务调度 遗传算法 蚁群算法 信息素
下载PDF
改进蚁群算法的送餐机器人路径规划 被引量:4
14
作者 蔡军 钟志远 《智能系统学报》 CSCD 北大核心 2024年第2期370-380,共11页
蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的... 蚁群算法拥有良好的全局性、自组织性、鲁棒性,但传统蚁群算法存在许多不足之处。为此,针对算法在路径规划问题中的缺陷,在传统蚁群算法的状态转移公式中,引入目标点距离因素和引导素,加快算法收敛性和改善局部最优缺陷。在带时间窗的车辆路径问题(vehicle routing problem with time windows,VRPTW)上,融合蚁群算法和遗传算法,并将顾客时间窗宽度以及机器人等待时间加入蚁群算法状态转移公式中,以及将蚁群算法的解作为遗传算法的初始种群,提高遗传算法的初始解质量,然后进行编码,设置违反时间窗约束和载重量的惩罚函数和适应度函数,在传统遗传算法的交叉、变异操作后加入了破坏-修复基因的操作来优化每一代新解的质量,在Solomon Benchmark算例上进行仿真,对比算法改进前后的最优解,验证算法可行性。最后在餐厅送餐问题中把带有障碍物的仿真环境路径规划问题和VRPTW问题结合,使用改进后的算法解决餐厅环境下送餐机器人对顾客服务配送问题。 展开更多
关键词 蚁群算法 遗传算法 状态转移公式 适应度函数 引导素 局部最优 初始种群 时间窗约束 路径规划
下载PDF
基于改进遗传算法对机械臂最优时间轨迹规划
15
作者 郭北涛 金福鑫 张丽秀 《组合机床与自动化加工技术》 北大核心 2024年第10期63-67,共5页
针对传统工业机器人在轨迹规划过程中,运动耗时长、易陷入局部最优解的问题,提出一种基于改进自适应遗传算法对于6R机械臂轨迹优化算法。通过加入改进的自适应调节机制,自适应的去改变交叉概率和变异概率。首先,建立六自由度机械臂模型... 针对传统工业机器人在轨迹规划过程中,运动耗时长、易陷入局部最优解的问题,提出一种基于改进自适应遗传算法对于6R机械臂轨迹优化算法。通过加入改进的自适应调节机制,自适应的去改变交叉概率和变异概率。首先,建立六自由度机械臂模型,采用改进型D-H参数法获得机器人连杆参数数据;其次,通过4-1-4多项式插值的方法进行轨迹规划,以运行时间为优化目标,利用改进自适应遗传算法结合蚁群算法对运动轨迹进行优化;最后,通过目标函数解决运动学约束问题。通过MATLAB仿真实验验证相比于传统的遗传算法,该轨迹的运行时间从12.23 s减少到了9.05 s,整体运行轨迹时间缩短3.18 s,优化后的效率提高近26%。适应度提高1.73,证明该算法能够有效地加快轨迹的运行时间,提高了机械臂的工作效率。 展开更多
关键词 遗传算法 蚁群算法 改进D-H法 轨迹规划 适应度
下载PDF
考虑电动汽车充电负荷及储能寿命的充电站储能容量配置优化
16
作者 马永翔 韩子悦 +2 位作者 闫群民 万佳鹏 淡文国 《电网与清洁能源》 CSCD 北大核心 2024年第4期92-101,共10页
提出了一种优化电动汽车充电站储能容量配置的方法。该方法考虑了季节性电动汽车充电负荷波动与光伏出力之间的关系,并且考虑了储能寿命。论文利用蒙特卡罗法考虑了不同类型电动汽车的多种影响因素,对整体负荷进行预测。以每日运行成本... 提出了一种优化电动汽车充电站储能容量配置的方法。该方法考虑了季节性电动汽车充电负荷波动与光伏出力之间的关系,并且考虑了储能寿命。论文利用蒙特卡罗法考虑了不同类型电动汽车的多种影响因素,对整体负荷进行预测。以每日运行成本最低为优化目标,在考虑四季光伏出力和储能寿命的影响下,采用了3种算法对目标函数进行优化,以得到最佳的光储充电站储能配置方案。研究以西北某地区为例。结果表明:冬季下综合成本为3.0432×10^(6)元,相比于其余3个季节综合成本最低;采用遗传算法时,在综合成本相差不多时,获得的储能配置最优,储能容量为22.82 MWh,储能功率为7.31MW,从而得到光储充电站最优的储能容量配置。 展开更多
关键词 光储充电站 电动汽车 储能寿命 储能容量优化 遗传算法 粒子群算法 蚁群算法
下载PDF
皮革数控裁剪路径优化算法研究综述
17
作者 吴德君 杨维 《中国皮革》 CAS 2024年第10期30-33,共4页
裁剪路径优化是皮革数控裁剪加工的关键,是确保加工高效率与皮革高利用率的主要途径。为提高皮革数控裁剪加工效率,缩短裁剪空行程路径,减少皮革边角料浪费,各研究领域分别着手于裁剪路径全局性与算法高效性,提出皮革数控裁剪路径优化... 裁剪路径优化是皮革数控裁剪加工的关键,是确保加工高效率与皮革高利用率的主要途径。为提高皮革数控裁剪加工效率,缩短裁剪空行程路径,减少皮革边角料浪费,各研究领域分别着手于裁剪路径全局性与算法高效性,提出皮革数控裁剪路径优化算法。本文通过对比分析皮革数控裁剪与人工裁剪,综述了皮革数控裁剪路径优化遗传算法、蚁群算法、模拟退火算法,以及改进算法、混合优化算法等相关研究现状与成果,并在此基础上对皮革数控裁剪路径优化算法研究的不足进行了总结。 展开更多
关键词 皮革裁剪 数控 路径优化 遗传算法 蚁群算法
下载PDF
基于优化蚁群算法的物流中心拣货路径优化研究 被引量:1
18
作者 何堃 《贵阳学院学报(自然科学版)》 2024年第1期85-89,共5页
在物流中心,合理规划拣货路径可以提升拣货效率,然而在工作人员拣货的过程中,没有对拣货路径进行合理的时间规划,拣货效率低。鉴于此,对蚁群算法进行改进,在此基础上优化拣货路径,以达到减少拣货路径长度的目的。结果显示,改进蚁群算法... 在物流中心,合理规划拣货路径可以提升拣货效率,然而在工作人员拣货的过程中,没有对拣货路径进行合理的时间规划,拣货效率低。鉴于此,对蚁群算法进行改进,在此基础上优化拣货路径,以达到减少拣货路径长度的目的。结果显示,改进蚁群算法有效降低了拣货路径长度,降低了24.49%;改进蚁群算法准确度高,达97.82%;在与遗传算法、传统蚁群算法的对比分析中,改进蚁群算法相比遗传算法路径长度减少了57.86%,相比传统蚁群算法路径长度减少了35.21%。实验验证了改进蚁群算法的优越性,说明改进蚁群算法可以有效优化拣货路径,减少拣货路径长度,提升物流中心的拣货效率。 展开更多
关键词 蚁群算法 遗传算法 拣货路径 物流中心 路径长度
下载PDF
基于虚拟仿真技术的收割机零部件智能化装配研究
19
作者 李权 陈庆 《自动化与仪表》 2024年第3期146-150,共5页
为准确实现收割机零部件智能化装配,并获取最佳收割机零部件智能化装配路径,该文设计了基于虚拟仿真技术的收割机零部件智能化装配方法。首先采用Pro/E软件构建收割机零部件三维模型;然后构建收割机零部件智能化装配结构树模型反映收割... 为准确实现收割机零部件智能化装配,并获取最佳收割机零部件智能化装配路径,该文设计了基于虚拟仿真技术的收割机零部件智能化装配方法。首先采用Pro/E软件构建收割机零部件三维模型;然后构建收割机零部件智能化装配结构树模型反映收割机与零部件间的父子关联特性,并设计零部件装配约束条件,以约束条件完成收割机零部件智能化装配;最后利用遗传蚁群算法获取收割机零部件智能化装配规划的最佳路径。实验表明,该方法既可实现收割机零部件智能化装配,又可计算出收割机零部件智能化装配规划的最佳路径,提升收割机的智能化装配速度。 展开更多
关键词 虚拟仿真技术 收割机 零部件 智能化装配 PRO/E软件 遗传蚁群算法
下载PDF
基于MTSP问题的公共图书馆智慧配送服务
20
作者 江新姿 安晓丽 高尚 《计算机与现代化》 2024年第9期52-55,60,共5页
随着“互联网+”思维和图书馆服务模式与水平的发展,纸质资源的物流配送成为图书馆借阅平台的最后环节。如何在智慧图书馆智能服务平台中降低图书馆的配送成本、均衡配送员的工作量、提升配送效率是智慧服务的研究方向。在智能计算研究... 随着“互联网+”思维和图书馆服务模式与水平的发展,纸质资源的物流配送成为图书馆借阅平台的最后环节。如何在智慧图书馆智能服务平台中降低图书馆的配送成本、均衡配送员的工作量、提升配送效率是智慧服务的研究方向。在智能计算研究中,解决TSP旅行商问题常采用蚁群算法,因为蚁群算法能利用信息正反馈和启发式信息诱导,从而找出多目标遍历的最优解。针对图书馆馆际与社区物流配送的多旅行商MTSP问题,使用混合蚁群优化算法来实现图书纸质资源最后配送路径最优化处理,可以更好地实现配送效率的综合提升。图书馆高效率优质服务可以更好地提升阅读质量。 展开更多
关键词 智慧配送 多旅行商问题 混合蚁群优化算法
下载PDF
上一页 1 2 46 下一页 到第
使用帮助 返回顶部