This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes ar...This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.展开更多
A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while sea...A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson (ie., FT6 and FT20)is made. The experiment results show the better optimal performance of the proposed algorithm.展开更多
This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable dec...This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality.展开更多
We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expe...We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local search crossover operator and the double-bridge random mutation are highlighted, to enhance the convergence and the possibility of escaping from the local optima. The experimental results illustrate that the novel hybrid genetic algorithm outperforms other genetic algorithms by providing higher accuracy and satisfactory efficiency in real optimization processing.展开更多
Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a...Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.展开更多
基金Project(16B134)supported by Hunan Provincial Department of Education,China
文摘This paper presents a bi-level hybrid local search(BHLS)algorithm for the three-dimensional loading problem with balancing constraints(3DLP-B),where several rectangular boxes with even densities but different sizes are loaded into a single cubic bin to meet the requirements of the space or capacity utilization and the balance of the center of gravity.The proposed algorithm hybridizes a novel framed-layout procedure in which the concept of the core block and its generation strategy are introduced.Once the block-loading sequence has been determined,we can load one block at a time by the designed construction heuristic.Then,the double-search is introduced;its external search procedure generates a list of compact packing patterns while its internal search procedure is used to search the core-block frames and their best distribution locations.The approach is extensively tested on weakly to strongly heterogeneous benchmark data.The results show that it has better performance in improving space utilization rate and balanced condition of the placement than existed techniques:the overall averages from 79.85%to 86.45%were obtained for the balanced cases and relatively high space-usage rate of 89.44%was achieved for the unbalanced ones.
基金TheNationalGrandFundamentalResearch973ProgramofChina (No .G19980 30 6 0 0 )
文摘A new local search method with hybrid neighborhood for Job shop scheduling problem is developed. The proposed hybrid neighborhood is not only efficient in local search, but also can help overcome entrapments while search procedure get trapped at local optima and carry the search to areas of the feasible set with better prospect. New strategies used for breaking out of entrapments are presented and they are helpful for the procedure to improve local optima. A performance comparison of the proposed method with some best-performing algorithms on all 10-job, 10-machine benchmark problems and the other two problems generated by Fisher and Thompson (ie., FT6 and FT20)is made. The experiment results show the better optimal performance of the proposed algorithm.
文摘This paper introduces a hybrid evolutionary algorithm for the resource-constrained project scheduling problem (RCPSP). Given an RCPSP instance, the algorithm identifies the problem structure and selects a suitable decoding scheme. Then a multi-pass biased sampling method followed up by a multi-local search is used to generate a diverse and good quality initial population. The population then evolves through modified order-based recombination and mutation operators to perform exploration for promising solutions within the entire region. Mutation is performed only if the current population has converged or the produced offspring by recombination operator is too similar to one of his parents. Finally the algorithm performs an intensified local search on the best solution found in the evolutionary stage. Computational experiments using standard instances indicate that the proposed algorithm works well in both computational time and solution quality.
文摘We present an improved hybrid genetic algorithm to solve the two-dimensional Eucli-dean traveling salesman problem (TSP), in which the crossover operator is enhanced with a local search. The proposed algorithm is expected to obtain higher quality solutions within a reasonable computational time for TSP by perfectly integrating GA and the local search. The elitist choice strategy, the local search crossover operator and the double-bridge random mutation are highlighted, to enhance the convergence and the possibility of escaping from the local optima. The experimental results illustrate that the novel hybrid genetic algorithm outperforms other genetic algorithms by providing higher accuracy and satisfactory efficiency in real optimization processing.
基金supported by the National Natural Science Fundation of China (60774082 70871065+2 种基金 60834004)the Program for New Century Excellent Talents in University (NCET-10-0505)the Doctoral Program Foundation of Institutions of Higher Education of China(20100002110014)
文摘Aiming at the hybrid flow-shop (HFS) scheduling that is a complex NP-hard combinatorial problem with wide engineering background, an effective algorithm based on differential evolution (DE) is proposed. By using a special encoding scheme and combining DE based evolutionary search and local search, the exploration and exploitation abilities are enhanced and well balanced for solving the HFS problems. Simulation results based on some typical problems and comparisons with some existing genetic algorithms demonstrate the proposed algorithm is effective, efficient and robust for solving the HFS problems.