Three types of textured indium-tin-oxide (ITO) surface, including nano-texturing and hybrid micro/nano-texturing with micro-holes (concave-hybrid-pattem) or micro-pillars (convex-hybrid-pattern), were applied to...Three types of textured indium-tin-oxide (ITO) surface, including nano-texturing and hybrid micro/nano-texturing with micro-holes (concave-hybrid-pattem) or micro-pillars (convex-hybrid-pattern), were applied to GaN-based light-emitting diodes (LEDs). The nano-texturing was realized by maskless wet-etching, and the micro-texturing was achieved by standard photolithography and wet-etching. Compared to LED chips with flat ITO surface, those with nano-pattern, concave-hybrid-pattern, and convex-hybrid-pattern exhibit enhancement of 11.3%, 15.8%, and 17.9%, respectively, for the light-output powers at 20 mA. The electrical performance has no degradation. Moreover, the convex-hybrid-pattern show higher light-output efficiency under small injection current, while the concave-hybrid-pattern exhibit better light-output efficiency at large injection current. The light- extraction efficiency is simulated by use of two-dimensional finite difference time domain method, and the numer- ical results are consistent with the experiments.展开更多
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of...The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.展开更多
The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusi...The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusion of engineered fiber is one of the promising methods to not only enhanced the mechanical performance but also suppressed the drawbacks that associate with such plant-based fiber to some extent. A usual hand lay-up method was taken-up in this work to fabricate four layered of hybrid kenaf(K)/glass(G)polyester laminates with different stacking order such as KKKK,KGKG,KGGK,GKKG and GGGG. The erosive character of the laminates was examined under three distinct particle velocities(48m/s, 70m/s,82m/s)and four different impact angles(30°, 45°, 60°, 90°). All fabricated laminates exhibited a semiductile character at lower velocities(48m/s and70m/s)as peak wear rate was observed at45° impact angle. However,they showed a semi-brittle character at high velocity(82m/s)as maximum rate of erosion was noticed at60° impact angle. Again,the influence of stacking order of piles on erosion wear was also clearly noticed. Moreover,the semi-brittle/semi-ductile characterization was also evidenced in accordance to the range of erosion efficiencies. The micro-structures of worn surfaces were inspected thoroughly from the images of scanning electron microscope(SEM)to evident the mechanism of erosion.展开更多
We put forward a protocolcombining laser treatment and acid etching to obtain multiscale micro/nano-texture surfaces of titanium alloy implant.Firstly,the operationalparameters of the laser were optimized to obtain an...We put forward a protocolcombining laser treatment and acid etching to obtain multiscale micro/nano-texture surfaces of titanium alloy implant.Firstly,the operationalparameters of the laser were optimized to obtain an optimum current.Secondly,the laser with the optimum operationalparameters was used to fabricate micro pits.Thirdly,multiple acid etching was used to clean the clinkers of micro pits and generate submicron and nanoscale structures.Finally,the bioactivity of the samples was measured in a simulated body fluid.The results showed that the micropits with a diameter of 150 μm and depth of 50 μm were built successfully with the optimized working current of 13 A.In addition,submicron and nanoscale structures,with 0.5-2 μm microgrooves and 10-20 nm nanopits,were superimposed on micro pits surface by multiple acid etching.There was thick and dense HA coating only observed on the multiscale micro/nano-textured surface compared with polished and micro-textured surface.This indicated that the multiscale micro/nano-texture surface showed better ability toward HA formation,which increased the bioactivity of implants.展开更多
A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. I...A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. In the autogenous laser welding, the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-beat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap. The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces. Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.展开更多
With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d...With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes.展开更多
Arbitrary micro-scale three-dimensional(3D)structures fabrication is a dream to achieve many exciting goals that have been pursued for a long time.Among all these applications,the direct 3D printing to fabricate human...Arbitrary micro-scale three-dimensional(3D)structures fabrication is a dream to achieve many exciting goals that have been pursued for a long time.Among all these applications,the direct 3D printing to fabricate human organs and integrated photonic circuits are extraordinary attractive as they can promote the current technology to a new level.Among all the 3D printing methods available,two-photon polymerization(2PP)is very competitive as it is the unique method to achieve sub-micron resolution to make any desired tiny structures.For the conventional 2PP,the building block is the photoresist.However,the requirement for the building block is different for different purposes.It is very necessary to investigate and improve the photoresist properties according to different requirements.In this paper,we presented one hybrid method to modify the mechanical strength and light trapping efficiency of the photoresist,which transfers the photoresist into the micro-concretes.The micro-concrete structure can achieve±22%strength modification via a silica nano-particles doping.The structures doped with gold nano-particles show tunable plasmonic absorption.Dye doped hybrid structure shows great potential to fabricate 3D micro-chip laser.展开更多
Micro-gear is an important actuating component used widely in the micro electro mechanical systems(MEMS) devices.The technologies of micro-forming and precision assembly are urgently developed to manufacture the micro...Micro-gear is an important actuating component used widely in the micro electro mechanical systems(MEMS) devices.The technologies of micro-forming and precision assembly are urgently developed to manufacture the micro-double gear with central shaft.In the paper,a novel hy-brid-forming process with two kinds of piercing method have been proposed to manufacture the micro-double gear using micro forming technology.The tests of hybrid forming process were carried out with two steps and the micro-double gear was successfully manufactured with good surface quality.The results also show that the hybrid micro-forming process with central piercing method can improve the defects of inclining shaft generated by double-ended piercing method.The quality evaluation of micro-double gear was conducted with surface roughness,micro-hardness and impact tests.The results show that the micro-double gear with good mechanical properties can meet the requirements of application for milli-machines.展开更多
Mn+1AXn(MAX) phases are a family of nanolaminated compounds that possess unique combination of typical ceramic properties and typical metallic properties.As a member of MAX phase,Ti2 AlN bulk materials are attractive ...Mn+1AXn(MAX) phases are a family of nanolaminated compounds that possess unique combination of typical ceramic properties and typical metallic properties.As a member of MAX phase,Ti2 AlN bulk materials are attractive for some high-temperature applications.The synthesis,characteristics and machining performance of hybrid Ti2 AlN bulk materials were focused on in this work.The bulk samples mainly consisting of Ti2 AlN MAX phase with density close to theoretic one were synthesized by a spark plasma sintering method.Scanning electron microscopy results indicate homogenous distribution of Ti2 AlN grains in the samples.Micro-hardness values are almost constant under different loads (6-6.5 GPa).A machining test was carried out to compare the effect of material properties on micro-electrical discharge machining (micro-EDM) performance for Ti2 AlN bulk samples and Ti6242 alloy.The machining performance of the Ti2 AlN sample is better than that of the Ti6242 alloy.The inherent mechanism was discussed by considering their electrical and thermal conductivity.展开更多
Scarcity of fossil fuel resources has motivated the researchers to develop renewable energy based power projects. Instead of using a single or independent renewable energy source, it is preferable to use the combinati...Scarcity of fossil fuel resources has motivated the researchers to develop renewable energy based power projects. Instead of using a single or independent renewable energy source, it is preferable to use the combination of such energy sources in a distributed way to compensate the power fluctuations of the system and this leads to the concept of hybrid micro-grid energy. Voltage stability is an important parameter for the secure operation of the hybrid-micro grid, and IEEE 1547 Standard defines the limit of the voltage for the successful operation of the micro-grid. Although Vanadium Redox Batteries (VRBs) can help the system to stabilize the voltage when voltage sag occurs when a heavy load is suddenly connected to the system, this stabilization process takes some time. This paper discusses the application of super capacitors to the hybrid micro-grid system, as a higher energy density element, to help the system quickly recover its transient voltage.展开更多
48 V lithium battery micro hybrid system is the most fuel economy vehicle which can be mass produced at present.However,with the irreversible internal resistance increase of the key component 48 V lithium battery,and ...48 V lithium battery micro hybrid system is the most fuel economy vehicle which can be mass produced at present.However,with the irreversible internal resistance increase of the key component 48 V lithium battery,and the capacity continues to decline,the system performance deteriorate.Worst case could be the system not functional in the middle and later age of vehicle life cycle.This paper studies the feasibility of using 48 V super capacitor as the replacement to 48 V lithium battery,and uses a 12 V module of 48 V super capacitor as the traditional 12 V power supply,further reducing the number of components or reducing the demand for parts of 48 V micro hybrid system.This paper analyses the 48 V super capacitor micro hybrid system scheme,based on which a prototype is built,and carries out the vehicle comparative test.The results show that:(1)The performance of 48 V super capacitor micro hybrid system perform comparably with 48 V lithium battery micro hybrid system,and 12 V multiplexing function does not cause power loss of super capacitor;(2)The SOC fluctuation of super capacitor is larger than that of lithium battery,but it can satisfy all test conditions through the strategy;(3)The voltage mutation of super capacitor is smaller than that of lithium battery.It can greatly reduce the impact of voltage on vehicle electrical appliances.The 48 V super capacitor micro hybrid system with 12 V multiplexing function is of great significance.展开更多
Hybrid white micro-pillar structure light emitting diodes(LEDs)have been manufacture utilizing blue micro-LEDs arrays integrated with 580 nm CIS((CuInS2-ZnS)/ZnS)core/shell quantum dots.The fabricated hybrid white mic...Hybrid white micro-pillar structure light emitting diodes(LEDs)have been manufacture utilizing blue micro-LEDs arrays integrated with 580 nm CIS((CuInS2-ZnS)/ZnS)core/shell quantum dots.The fabricated hybrid white micro-LEDs have good electrical properties,which are manifested in relatively low turn-on voltage and reverse leakage current.High-quality hybrid white light emission has been demonstrated by the hybrid white micro-LEDs after a systemic optimization,in which the corresponding color coordinates are calculated to be(0.3303,0.3501)and the calculated color temperature is 5596 K.This result indicates an effective way to achieve high-performance white LEDs and shows great promise in a large range of applications in the future including micro-displays,bioinstrumentation and visible light communication.展开更多
A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the de...A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of silicon micro-electro-mechanical systems (MEMS) tech- nology. The silicon MPP has dense and accurate micro-holes. This noise reduction structure has the advantages of wide band and higher absorption coefficients. The vibration energy harvesting part is formed by square piezoelectric membranes arranged in rows. ZnO material is used as it has a good compatibility with the fabrication process. The MPP, piezo- electric membranes, and metal bracket are assembled into a hybrid device with multifunctions. The device exhibits good performances of acoustic noise absorption and acoustic-electric conversion. Its maximum open circuit voltage achieves 69.41 mV.展开更多
随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间...随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间的调度带来困难。在此背景下提出考虑产消者响应与电价不确定性的微能网与产消者混合博弈优化策略。首先,构建产消者响应模型和电价不确定性模型,引入效用函数来描述PCU的满意程度,采用鲁棒优化和机会约束方法描述电价的不确定性与新能源出力的不确定性。其次,构建混合博弈模型,即上层微能网运营商(integrated energy operator,IEO)与下层PCU之间的主从博弈模型和下层PCU联盟之间的合作博弈模型。上层IEO作为主从博弈的领导者以运行成本最小化为目标,通过为产消者制定电价、热价引导产消者的用能需求;下层产消者作为跟随者,以效益最大为目标通过合作方式对IEO的决策进行产消者响应。PCU之间的合作博弈以纳什议价的方式进行,将PCU模型等效为联盟收益最大化和合作分配两个子问题。基于KKT条件利用Big-M法和Mc Cormick包络法将双层问题转换为单层混合整数线性规划问题求解主从博弈,结合交替方向乘子法(alternating direction multiplier method,ADMM)求解下层合作博弈。结果表明,该文所提策略有效协调了微能网与PCU的调度并保证了PCU合作联盟的公平性。展开更多
基金Project supported by the National High Technology Research and Development Program of China(No.2014AA032609)the Strategic Emerging Industry Special Funds of Guangdong Province(Nos.2010A081002009,2011A081301004,2012A080302003)the Fundamental Research Funds for the Central Universities(Nos.2013ZM093,2013ZP0017)
文摘Three types of textured indium-tin-oxide (ITO) surface, including nano-texturing and hybrid micro/nano-texturing with micro-holes (concave-hybrid-pattem) or micro-pillars (convex-hybrid-pattern), were applied to GaN-based light-emitting diodes (LEDs). The nano-texturing was realized by maskless wet-etching, and the micro-texturing was achieved by standard photolithography and wet-etching. Compared to LED chips with flat ITO surface, those with nano-pattern, concave-hybrid-pattern, and convex-hybrid-pattern exhibit enhancement of 11.3%, 15.8%, and 17.9%, respectively, for the light-output powers at 20 mA. The electrical performance has no degradation. Moreover, the convex-hybrid-pattern show higher light-output efficiency under small injection current, while the concave-hybrid-pattern exhibit better light-output efficiency at large injection current. The light- extraction efficiency is simulated by use of two-dimensional finite difference time domain method, and the numer- ical results are consistent with the experiments.
基金the Fundamental Research Funds for the Central Universities(Grant No.30920041102)National Natural Science Foundation of China(Grant No.11802134).
文摘The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually.
文摘The awareness amongst the researchers to develop an environment friendly sustainable material leads to explore new class of plant-based fiber for making composites. Hybridization of such plant-based fiber with inclusion of engineered fiber is one of the promising methods to not only enhanced the mechanical performance but also suppressed the drawbacks that associate with such plant-based fiber to some extent. A usual hand lay-up method was taken-up in this work to fabricate four layered of hybrid kenaf(K)/glass(G)polyester laminates with different stacking order such as KKKK,KGKG,KGGK,GKKG and GGGG. The erosive character of the laminates was examined under three distinct particle velocities(48m/s, 70m/s,82m/s)and four different impact angles(30°, 45°, 60°, 90°). All fabricated laminates exhibited a semiductile character at lower velocities(48m/s and70m/s)as peak wear rate was observed at45° impact angle. However,they showed a semi-brittle character at high velocity(82m/s)as maximum rate of erosion was noticed at60° impact angle. Again,the influence of stacking order of piles on erosion wear was also clearly noticed. Moreover,the semi-brittle/semi-ductile characterization was also evidenced in accordance to the range of erosion efficiencies. The micro-structures of worn surfaces were inspected thoroughly from the images of scanning electron microscope(SEM)to evident the mechanism of erosion.
基金Funded by the National Natural Science Foundation of China(51175306 and 51575320)the Tai Shan Scholar Foundation(TS20130922)the Fundamental Research Funds for the Central Universities(2014JC020)
文摘We put forward a protocolcombining laser treatment and acid etching to obtain multiscale micro/nano-texture surfaces of titanium alloy implant.Firstly,the operationalparameters of the laser were optimized to obtain an optimum current.Secondly,the laser with the optimum operationalparameters was used to fabricate micro pits.Thirdly,multiple acid etching was used to clean the clinkers of micro pits and generate submicron and nanoscale structures.Finally,the bioactivity of the samples was measured in a simulated body fluid.The results showed that the micropits with a diameter of 150 μm and depth of 50 μm were built successfully with the optimized working current of 13 A.In addition,submicron and nanoscale structures,with 0.5-2 μm microgrooves and 10-20 nm nanopits,were superimposed on micro pits surface by multiple acid etching.There was thick and dense HA coating only observed on the multiscale micro/nano-textured surface compared with polished and micro-textured surface.This indicated that the multiscale micro/nano-texture surface showed better ability toward HA formation,which increased the bioactivity of implants.
文摘A laser lap welding process for zinc-coated steel has a well-known unsolved problem-porosity formation. The boiling temperature of coated zinc is lower than the melting temperature of the base metal, which is steel. In the autogenous laser welding, the zinc vapor generates from the lapped surfaces expels the molten pool and the expulsion causes numerous weld defects, such as spatters and blow holes on the weld surface and porosity inside the welds. The laser-arc hybrid welding was suggested as an alternative method for the laser lap welding because the arc can preheat or post-beat the weldment according to the arrangement of the laser beam and the arc. CO2 laser-micro plasma hybrid welding was applied to the lap welding of zinc-coated steel with zero-gap. The relationships among the weld quality and process parameters of the laser-arc arrangement, and the laser-arc interspacing distance and arc current were investigated using a full-factorial experimental design. The effect of laser-arc arrangement is dominant because the leading plasma arc partially melts the upper steel sheets and vaporizes or oxidizes the coated zinc on the lapped surfaces. Compared with the result from the laser-TIG hybrid welding, the heat input from arc can be reduced by 40%.
基金Projects(61573380,61303185)supported by the National Natural Science Foundation of ChinaProject(13BTQ052)supported by the National Social Science Foundation of China+1 种基金Project(2016M592450)supported by the China Postdoctoral Science FoundationProject(2016JJ4119)supported by the Hunan Provincial Natural Science Foundation of China
文摘With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes.
基金financially supported by A*STAR, SERC 2014 Public Sector Research Funding (PSF) (Grant: SERC Project, 1421200080)973 Program of China (2013CBA01700)Chinese Nature Science Grant (61675207, U1609209)
文摘Arbitrary micro-scale three-dimensional(3D)structures fabrication is a dream to achieve many exciting goals that have been pursued for a long time.Among all these applications,the direct 3D printing to fabricate human organs and integrated photonic circuits are extraordinary attractive as they can promote the current technology to a new level.Among all the 3D printing methods available,two-photon polymerization(2PP)is very competitive as it is the unique method to achieve sub-micron resolution to make any desired tiny structures.For the conventional 2PP,the building block is the photoresist.However,the requirement for the building block is different for different purposes.It is very necessary to investigate and improve the photoresist properties according to different requirements.In this paper,we presented one hybrid method to modify the mechanical strength and light trapping efficiency of the photoresist,which transfers the photoresist into the micro-concretes.The micro-concrete structure can achieve±22%strength modification via a silica nano-particles doping.The structures doped with gold nano-particles show tunable plasmonic absorption.Dye doped hybrid structure shows great potential to fabricate 3D micro-chip laser.
基金Funded by the Technology Research and Development Program of China (2006AA04Z331)Young Scholars of Heilongjiang Province (JC-05-11 and JC-06-07)
文摘Micro-gear is an important actuating component used widely in the micro electro mechanical systems(MEMS) devices.The technologies of micro-forming and precision assembly are urgently developed to manufacture the micro-double gear with central shaft.In the paper,a novel hy-brid-forming process with two kinds of piercing method have been proposed to manufacture the micro-double gear using micro forming technology.The tests of hybrid forming process were carried out with two steps and the micro-double gear was successfully manufactured with good surface quality.The results also show that the hybrid micro-forming process with central piercing method can improve the defects of inclining shaft generated by double-ended piercing method.The quality evaluation of micro-double gear was conducted with surface roughness,micro-hardness and impact tests.The results show that the micro-double gear with good mechanical properties can meet the requirements of application for milli-machines.
基金Project supported by a 2-Year Research Grant of Pusan National University,KoreaProject(2010-0008-277)partly supported by NCRC Program funded by the Ministry of Education,Science and Technology
文摘Mn+1AXn(MAX) phases are a family of nanolaminated compounds that possess unique combination of typical ceramic properties and typical metallic properties.As a member of MAX phase,Ti2 AlN bulk materials are attractive for some high-temperature applications.The synthesis,characteristics and machining performance of hybrid Ti2 AlN bulk materials were focused on in this work.The bulk samples mainly consisting of Ti2 AlN MAX phase with density close to theoretic one were synthesized by a spark plasma sintering method.Scanning electron microscopy results indicate homogenous distribution of Ti2 AlN grains in the samples.Micro-hardness values are almost constant under different loads (6-6.5 GPa).A machining test was carried out to compare the effect of material properties on micro-electrical discharge machining (micro-EDM) performance for Ti2 AlN bulk samples and Ti6242 alloy.The machining performance of the Ti2 AlN sample is better than that of the Ti6242 alloy.The inherent mechanism was discussed by considering their electrical and thermal conductivity.
文摘Scarcity of fossil fuel resources has motivated the researchers to develop renewable energy based power projects. Instead of using a single or independent renewable energy source, it is preferable to use the combination of such energy sources in a distributed way to compensate the power fluctuations of the system and this leads to the concept of hybrid micro-grid energy. Voltage stability is an important parameter for the secure operation of the hybrid-micro grid, and IEEE 1547 Standard defines the limit of the voltage for the successful operation of the micro-grid. Although Vanadium Redox Batteries (VRBs) can help the system to stabilize the voltage when voltage sag occurs when a heavy load is suddenly connected to the system, this stabilization process takes some time. This paper discusses the application of super capacitors to the hybrid micro-grid system, as a higher energy density element, to help the system quickly recover its transient voltage.
基金The National Key Research and Development Program for New Energy Vehicles in 2018“Power System Platform and Vehicle Integration Technology for Extended-Range Fuel Cell Cars”(2018YFB0105400)。
文摘48 V lithium battery micro hybrid system is the most fuel economy vehicle which can be mass produced at present.However,with the irreversible internal resistance increase of the key component 48 V lithium battery,and the capacity continues to decline,the system performance deteriorate.Worst case could be the system not functional in the middle and later age of vehicle life cycle.This paper studies the feasibility of using 48 V super capacitor as the replacement to 48 V lithium battery,and uses a 12 V module of 48 V super capacitor as the traditional 12 V power supply,further reducing the number of components or reducing the demand for parts of 48 V micro hybrid system.This paper analyses the 48 V super capacitor micro hybrid system scheme,based on which a prototype is built,and carries out the vehicle comparative test.The results show that:(1)The performance of 48 V super capacitor micro hybrid system perform comparably with 48 V lithium battery micro hybrid system,and 12 V multiplexing function does not cause power loss of super capacitor;(2)The SOC fluctuation of super capacitor is larger than that of lithium battery,but it can satisfy all test conditions through the strategy;(3)The voltage mutation of super capacitor is smaller than that of lithium battery.It can greatly reduce the impact of voltage on vehicle electrical appliances.The 48 V super capacitor micro hybrid system with 12 V multiplexing function is of great significance.
基金supported by National Key R&D Program of China (2016YFB0400100)National Nature Science Foundation of China (61921005, 61674076, 61674081, 61605071, 61974062)+5 种基金Nature Science Foundation of Jiangsu Province (BY2013077, BK20141320, BE2015111)Six Talent Peaks Project of Jiangsu Province (XYDXX-081)Open Fund of the State Key Laboratory on Integrated Optoelectronics (IOSKL2017KF03)Innovation Project of Postgraduate Training in Jiangsu Province (KYCX18_0031)Fundamental Research Funds for the Central Universities (021014380096)Collaborative Innovation Center of Solid State Lighting and Energy-saving Electronics
文摘Hybrid white micro-pillar structure light emitting diodes(LEDs)have been manufacture utilizing blue micro-LEDs arrays integrated with 580 nm CIS((CuInS2-ZnS)/ZnS)core/shell quantum dots.The fabricated hybrid white micro-LEDs have good electrical properties,which are manifested in relatively low turn-on voltage and reverse leakage current.High-quality hybrid white light emission has been demonstrated by the hybrid white micro-LEDs after a systemic optimization,in which the corresponding color coordinates are calculated to be(0.3303,0.3501)and the calculated color temperature is 5596 K.This result indicates an effective way to achieve high-performance white LEDs and shows great promise in a large range of applications in the future including micro-displays,bioinstrumentation and visible light communication.
基金Project supported by the National Natural Science Foundation of China(Grant No.51305423)the National Basic Research Program of China(GrantNo.2011CB302104)
文摘A kind of hybrid device for acoustic noise reduction and vibration energy harvesting based on the silicon micro- perforated panel (MPP) resonant structure is investigated in the article. The critical parts of the device include MPP and energy harvesting membranes. They are all fabricated by means of silicon micro-electro-mechanical systems (MEMS) tech- nology. The silicon MPP has dense and accurate micro-holes. This noise reduction structure has the advantages of wide band and higher absorption coefficients. The vibration energy harvesting part is formed by square piezoelectric membranes arranged in rows. ZnO material is used as it has a good compatibility with the fabrication process. The MPP, piezo- electric membranes, and metal bracket are assembled into a hybrid device with multifunctions. The device exhibits good performances of acoustic noise absorption and acoustic-electric conversion. Its maximum open circuit voltage achieves 69.41 mV.
文摘随着分布式能源的发展,传统用户具备发电能力而成为产消者(production and consumption users,PCU)的趋势愈演愈烈,该文主要研究了同一微能网下大量产消者的协同运行问题。电价不确定性和产消者响应给微能网协同不同利益主体的PCU之间的调度带来困难。在此背景下提出考虑产消者响应与电价不确定性的微能网与产消者混合博弈优化策略。首先,构建产消者响应模型和电价不确定性模型,引入效用函数来描述PCU的满意程度,采用鲁棒优化和机会约束方法描述电价的不确定性与新能源出力的不确定性。其次,构建混合博弈模型,即上层微能网运营商(integrated energy operator,IEO)与下层PCU之间的主从博弈模型和下层PCU联盟之间的合作博弈模型。上层IEO作为主从博弈的领导者以运行成本最小化为目标,通过为产消者制定电价、热价引导产消者的用能需求;下层产消者作为跟随者,以效益最大为目标通过合作方式对IEO的决策进行产消者响应。PCU之间的合作博弈以纳什议价的方式进行,将PCU模型等效为联盟收益最大化和合作分配两个子问题。基于KKT条件利用Big-M法和Mc Cormick包络法将双层问题转换为单层混合整数线性规划问题求解主从博弈,结合交替方向乘子法(alternating direction multiplier method,ADMM)求解下层合作博弈。结果表明,该文所提策略有效协调了微能网与PCU的调度并保证了PCU合作联盟的公平性。