期刊文献+
共找到267篇文章
< 1 2 14 >
每页显示 20 50 100
Ignition processes and characteristics of charring conductive polymers with a cavity geometry in precombustion chamber for applications in micro/nano satellite hybrid rocket motors
1
作者 Zhiyuan Zhang Hanyu Deng +2 位作者 Wenhe Liao Bin Yu Zai Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期55-66,共12页
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of... The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually. 展开更多
关键词 Micro/nano satellite hybrid propulsion Arc ignition Charring conductive polymer Ignition mechanism Ignition characteristic Repeated ignition
下载PDF
Regulatable Orthotropic 3D Hybrid Continuous Carbon Networks for Efficient Bi-Directional Thermal Conduction 被引量:1
2
作者 Huitao Yu Lianqiang Peng +2 位作者 Can Chen Mengmeng Qin Wei Feng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期136-148,共13页
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff... Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes. 展开更多
关键词 Orthotropic continuous structures hybrid carbon networks Carbon/polymer composites Thermal interface materials
下载PDF
Functional micro‐concrete 3D hybrid structures f abricated by two‐photon polymerization 被引量:2
3
作者 Yang Li Lianwei Chen +5 位作者 Fang Kong Zuyong Wang Ming Dao Chwee Teck Lim Fengping Li Minghui Hong 《光电工程》 CAS CSCD 北大核心 2017年第4期393-399,469,共8页
Arbitrary micro-scale three-dimensional(3D)structures fabrication is a dream to achieve many exciting goals that have been pursued for a long time.Among all these applications,the direct 3D printing to fabricate human... Arbitrary micro-scale three-dimensional(3D)structures fabrication is a dream to achieve many exciting goals that have been pursued for a long time.Among all these applications,the direct 3D printing to fabricate human organs and integrated photonic circuits are extraordinary attractive as they can promote the current technology to a new level.Among all the 3D printing methods available,two-photon polymerization(2PP)is very competitive as it is the unique method to achieve sub-micron resolution to make any desired tiny structures.For the conventional 2PP,the building block is the photoresist.However,the requirement for the building block is different for different purposes.It is very necessary to investigate and improve the photoresist properties according to different requirements.In this paper,we presented one hybrid method to modify the mechanical strength and light trapping efficiency of the photoresist,which transfers the photoresist into the micro-concretes.The micro-concrete structure can achieve±22%strength modification via a silica nano-particles doping.The structures doped with gold nano-particles show tunable plasmonic absorption.Dye doped hybrid structure shows great potential to fabricate 3D micro-chip laser. 展开更多
关键词 3D打印 光子集成电路 发展现状 技术创新
下载PDF
Fatigue behavior of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer sheets 被引量:3
4
作者 潘建伍 吴刚 袁希贵 《Journal of Southeast University(English Edition)》 EI CAS 2013年第1期84-87,共4页
In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios ... In order to study the fatigue failure mode and fatigue life laws of basalt-aramid and basalt-carbon hybrid fiber reinforced polymer ( FRP ) sheets, fatigue experiments are carried out, considering two hybrid ratios of 1 : 1 and 2:1 under different stress levels from 0.6 to 0.95. The results show that fractures occur first in carbon fibers or aramid fibers for the specimens with hybrid ratio of 1: 1, namely B1A1 and B1C1, while a fracture occurs first in basalt fibers for the specimens with a hybrid ratio of 2: 1, namely B2A1 and B2C1. The fatigue lives of the hybrid FRP sheets increase with the improvement of the content of carbon fibers or aramid fibers, and the influence of the carbon fibers content improvement to fatigue life is more significant. The fatigue performance of B2A1 is relatively worse, while the fatigue performance of B1C1 and B2C1 is relatively better. Finally, a new fatigue stiffness degradation model with dual variables and double inflection points is presented, which is applicable to both hybrid and normal FRP sheets. 展开更多
关键词 hybrid fiber reinforced polymer sheet basalt-aramid basalt-carbon fatigue experiment stiffness degradation model
下载PDF
Preparation of Organic/Inorganic Hybrid Polymer Emulsions with High Silicon Content and Sol-gel-derived Thin Films 被引量:22
5
作者 廖文波 瞿金清 +1 位作者 李忠 陈焕钦 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2010年第1期156-163,共8页
A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of... A novel polymer/SiO2 hybrid emulsion(PAES)was prepared by directly mixing colloidal silica with polyacrylate emulsion(PAE)modified by a saline coupling agent.The sol-gel-derived thin films were obtained by addition of co-solvents into the PAES.The effects ofγ-methacryloxypropyltrimethoxysilane(KH-570)content and co-solvent on the properties of PAES films were investigated.Dynamic laser scattering(DLS)data indicate that the average diameter of PAES(96 nm)is slightly larger than that of PAE(89 nm).Transmission electron microscopy (TEM)photo discloses that colloidal silica particles are dispersed uniformly around polyacrylate particles and some of the colloidal silica particles are adsorbed on the surface of PAE particles.The crosslinking degree data and Fourier transform infrared(FT-IR)spectra confirm that the chemical structure of the PAES is changed to form Si-O-Si-polymer crosslinking networks during the film formation.Atomic force microscope(AFM)photos show the solvent induced sol-gel process of colloidal silica and the Si-based polymer distribution on the film surface of the dried PAES.Thermogravimetric analysis(TGA)curves demonstrate that the PAES films display much better thermal stability than PAE. 展开更多
关键词 colloidal silica polymer/SiO2 hybrid emulsions sol-gel process water resistance
下载PDF
Hybrid polymer electrolyte for Li–O_2 batteries 被引量:1
6
作者 Bojie Li Yijie Liu +2 位作者 Xiaoyu Zhang Ping He Haoshen Zhou 《Green Energy & Environment》 SCIE CSCD 2019年第1期3-19,共17页
Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_... Li–O_2 batteries have attracted much attention because of their high specific energy. However, safety problem generated mainly from the flammable organic liquid electrolytes have hindered the commercial use of Li–O_2 batteries. One of the competitive alternatives is polymer electrolytes due to their flexibility and non-flammable property. Moreover, the hybrid polymer electrolyte with enhanced electrochemical properties would be achieved by incorporating inorganic filler, liquid plasticizer and redox mediator into the polymer. While most researches of the hybrid polymer electrolyte focused on Li-ion batteries, few of them took account into its application in Li–O_2 batteries. In this review, we mainly discuss hybrid polymer electrolytes for Li–O_2 batteries with different composition. The critical issues including conductivity and stability of electrolytes are also discussed in detail. Our review provides some insights of hybrid polymer electrolytes for Li–O_2 batteries and offers necessary guidelines for designing the suitable hybrid polymer electrolyte for Li–O_2 batteries as well. 展开更多
关键词 Li–O2 battery hybrid polymer ELECTROLYTE INORGANIC FILLER Liquid PLASTICIZER Redox MEDIATOR
下载PDF
Dynamic and buckling analysis of polymer hybrid composite beam with variable thickness 被引量:1
7
作者 S.AFSHIN M.H.YAS 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2020年第5期785-804,共20页
This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The... This work deals with a study of the dynamic and buckling analysis of polymer hybrid composite(PHC) beam. The beam has variable thickness and is reinforced by carbon nanotubes(CNTs) and nanoclay(NC) simultaneously. The governing equations are derived based on the first shear deformation theory(FSDT). A three-phase HalpinTsai approach is used to predict the mechanical properties of the PHC. We focus our attention on the effect of the simultaneous addition of NC and CNT on the vibration and buckling analysis of the PHC beam with variable thickness. Also a comparison study is done on the sensation of three impressive parameters including CNT, NC weight fractions, and the shape factor of fillers on the mechanical properties of PHC beams,as well as fundamental frequencies of free vibrations and critical buckling load. The results show that the increase of shape factor value, NC, and CNT weight fractions leads to considerable reinforcement in mechanical properties as well as increase of the dimensionless fundamental frequency and buckling load. The variation of CNT weight fraction on elastic modulus is more sensitive rather than shear modulus but the effect of NC weight fraction on elastic and shear moduli is fairly the same. The shape factor values more than the medium level do not affect the mechanical properties. 展开更多
关键词 polymer hybrid composite(PHC) Halpin-Tsai carbon nanotube(CNT) nanoclay(NC) free vibration buckling load
下载PDF
Analysis on the Durability of Hybrid Polymer Composites for Power FGD System 被引量:1
8
作者 Zhenyu Wang Lijie Xiu +3 位作者 Enhou Han Yunhe Zhang Yongan Zhao Ming Liu 《Journal of Power and Energy Engineering》 2016年第3期1-8,共8页
The corrosion condition of flue gas desulfurization (FGD) equipment for the coal-fired power plant was defined as the strong corrosion grade. The lining system of hybrid polymer composite was used in internal cylinder... The corrosion condition of flue gas desulfurization (FGD) equipment for the coal-fired power plant was defined as the strong corrosion grade. The lining system of hybrid polymer composite was used in internal cylinder of steel chimney, and a corrosion-resistant and heat-resistant protective layer was formed on the metal surface. The corrosion-resistant and ageing-resistant properties of hybrid polymer composite prepared at low temperature after four years of practical use were investigated by differential scanning calorimeter (DSC), scanning electron microscopy (SEM) and measurement of gravimetric variation, contact angle, abrasion resistance, bonding strength and tensile strength. The properties of hybrid polymer composites prepared at 25℃ and –15℃ were comparatively analyzed in the paper. 展开更多
关键词 Coal-Fired Power Plant Flue Gas Desulfurization hybrid polymer Composite DURABILITY Corrosion Resistance
下载PDF
SYNTHESIS AND CHARACTERIZATION OF STRUCTURALLY WELL-DEFINED POLYMER-INORGANIC HYBRID NANOPARTICLES VIA ATRP
9
作者 Jie Bai Jie-bin Pang +1 位作者 Kun-yuan Qiu Yen Wei Department of Polymer Science & Engineering College of Chemistry & Molecular Engineering Peking University Beijing 100871, China Department of Chemistry Drexel University Philadelphia, PA 19104 USA 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2002年第3期261-267,共7页
Atom transfer radical polymerization (ATRP) using cuprous chloride/2,2'-bipyridine (bipy) was applied to graft polymerization of styrene on the surface of silica nanoparticles to synthesize polymer-inorganic hybri... Atom transfer radical polymerization (ATRP) using cuprous chloride/2,2'-bipyridine (bipy) was applied to graft polymerization of styrene on the surface of silica nanoparticles to synthesize polymer-inorganic hybrid nanoparticles, 2-(4Chloromethylphenyl) ethyltriethoxysilane (CTES) was immobilized on the surface of silica nanoparticles through condensation reaction of the silanol groups on silica with triethoxysilane group of CTES. Then ATRP of St was initiated by this surface-modified silica nanoparticles bearing benzyl chloride groups, and formed PSt graft chains on the surface of silica nanoparticles. The thickness of the graft chains increased with reaction time. End group analysis confirmed the occurrence of ATRP. Thermal analysis indicated that thermal stabilization of these resulting hybrid nanoparticles also increases with polymerization conversion. The results above show that this 'grafting from' reaction could be used for the preparation of polymer-inorganic hybrid nanoparticles with controlled structure of the polymer's end groups. 展开更多
关键词 atom transfer radical polymerization polymer-inorganic hybrid nanoparticles 2-(4-chloromethylphenyl)ethyltriethoxysilane SURFACE-MODIFICATION
下载PDF
Preparation and properties of a POSS-containing organic-inorganic hybrid crosslinked polymer
10
作者 Wang Yan Nie Gang Li +1 位作者 Yang Li Hong Yao Xu 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第6期738-742,共5页
A novel POSS-containing organic-inorganic hybrid crosslinked polymer was prepared by hydrosilylation reaction of octahydridosilsesquioxane (TsHs) with 4,4'-bis(4-altyloxybenzoyloxy)phenyl (diene A). Its structu... A novel POSS-containing organic-inorganic hybrid crosslinked polymer was prepared by hydrosilylation reaction of octahydridosilsesquioxane (TsHs) with 4,4'-bis(4-altyloxybenzoyloxy)phenyl (diene A). Its structure and property was characterized by FFIR, 29Si NMR, TGA and ellipsometer, respectively. The results show that the hybrid polymer possesses high thermal stability and low dielectric constant of 1.97 at optical frequencies. 展开更多
关键词 POSS HYDROSILYLATION Organic-inorganic hybrid polymer Thermal stability Dielectric property
下载PDF
Evaluation of Cisplatin-Loaded Polymeric Micelles and Hybrid Nanoparticles Containing Poly(Ethylene Oxide)-Block-Poly(Methacrylic Acid) on Tumor Delivery
11
作者 Andang Miatmoko Kumi Kawano +1 位作者 Etsuo Yonemochi Yoshiyuki Hattori 《Pharmacology & Pharmacy》 2016年第1期1-8,共8页
Particulate carriers such as polymeric micelles (PMs) and liposomes have been investigated to increase drug accumulation in tumors and reduce distribution to healthy tissues. In this study, we prepared PM and hybrid n... Particulate carriers such as polymeric micelles (PMs) and liposomes have been investigated to increase drug accumulation in tumors and reduce distribution to healthy tissues. In this study, we prepared PM and hybrid nanoparticles (HNPs) with poly(ethylene oxide)-block-poly(methacrylic acid) (PEO-b-PMAA) for loading cisplatin, and evaluated cisplatin release, cytotoxicity, and biodistribution in mice. PM composed of PEO-b-PMAA and HNPs composed of egg phosphatidylcholine (EPC)/PEO-b-PMAA at molar ratios of 50/2.8 (HNP-P5) and 50/50 (HNP-P50), respectively, were prepared by a nanoprecipitation method. The sizes of PM, HNP-P5, and HNP-P50 after inclusion of cisplatin were approximately 200, 100, and 55 nm, respectively, and their entrapment efficiencies were approximately 44% - 66%. In the drug-release study, HNP-P5 and HNP-P50 showed reduced release of cisplatin compared with PM. Regarding the cytotoxic assay, HNP-P5 exhibited lower cytotoxicity for mouse Lewis lung carcinoma (LLC) and mouse colon carcinoma Colon 26 cells than PM and HNP-P50. In terms of biodistribution, PM could significantly improve blood circulation and tumor accumulation after intravenous injection into Colon 26 tumor-bearing mice compared with free cisplatin, but HNP-P5 and HNP-P50 did not. EPC in HNPs might be destabilized in the circulation, although it could reduce release of cisplatin in in vitro experiments. This study suggested that polymeric micelles composed of PEO-b-PMAA are a better carrier for cisplatin than hybrid nanoparticles composed of PEO-b-PMAA and EPC. 展开更多
关键词 polymeric Micelles hybrid Nanoparticles CISPLATIN PEO-b-PMAA
下载PDF
Elastic modulus prediction for hybrid polymer composites
12
作者 Denis Rodrigue 《Materials Engineering Research》 2019年第2期64-68,共5页
To improve on the mechanical properties of polymers in general, the concept of hybrid composites was developed by using two or more different reinforcements in the same matrix, or by using two or more different sizes ... To improve on the mechanical properties of polymers in general, the concept of hybrid composites was developed by using two or more different reinforcements in the same matrix, or by using two or more different sizes of the same reinforcement (auto-hybrid composites). In this case, most of the literature results showed that the resulting elastic modulus can be well approximated by the simple rule of mixture (linear additive law) from the tensile modulus of each reinforcement used alone. But is some cases, a positive deviation from this linear approximation was reported up to a point where an optimum composition can give a modulus above the value of both reinforcements used separately. In this work, a simple model is presented to show that positive deviations are possible and the optimum reinforcement ratio is around 25/75 in terms of the lowest/highest reinforcing particle. The model is also compared with literature data where good qualitative agreements are obtained as a first approximation. 展开更多
关键词 hybrid polymer COMPOSITES ELASTIC MODULUS OPTIMUM COMPOSITION
下载PDF
Application of GD-APC Hybrid Polymeric Materials Anti-corrosion Transformation of Wet Stack 被引量:3
13
作者 白学利 王玉山 +1 位作者 郎鑫焱 和雄伟 《华北电力技术》 CAS 2012年第5期21-24,32,共5页
下载PDF
PAC-P(AM-BA)杂化高分子絮凝剂制备及絮凝效能评价
14
作者 崔红梅 祝凤蕊 +4 位作者 尹玲 孙林阳 李凯欣 张颖 齐晗兵 《高校化学工程学报》 EI CAS CSCD 北大核心 2024年第2期286-293,共8页
针对油田化学驱污水难处理问题,采用水溶液自由基胶束聚合法,以聚合氯化铝(PAC)为无机组分,丙烯酰胺(AM)、丙烯酸丁酯(BA)为有机单体,合成一种新型无机-有机杂化高分子絮凝剂(PAC-P(AM-BA))。利用傅里叶变换红外光谱仪(FT-IR)、热重分析... 针对油田化学驱污水难处理问题,采用水溶液自由基胶束聚合法,以聚合氯化铝(PAC)为无机组分,丙烯酰胺(AM)、丙烯酸丁酯(BA)为有机单体,合成一种新型无机-有机杂化高分子絮凝剂(PAC-P(AM-BA))。利用傅里叶变换红外光谱仪(FT-IR)、热重分析仪(TGA)、扫描电子显微镜(SEM)和比表面积分析仪(BET)对絮凝剂进行表征。结果表明,BA以化学键连接在聚丙烯酰胺(PAM)长链中,无机组分与有机组分之间以离子键连接。PAC-P(AM-BA)热分解温度为233.93℃,比表面积为30.351m^(2)·g^(-1)。絮凝实验结果表明,PAC-P(AM-BA)最佳投加量为20 mg·L^(-1),沉降时间为10 h,其絮体分形维数为1.733。在絮凝效能对比实验中,PAC-P(AM-BA)的平均除油率为90.3%,较阳离子聚丙烯酰胺(CPAM)和复配型絮凝剂(PAC+PAM)分别高出16.4%和29.0%。 展开更多
关键词 自由基胶束聚合法 无机-有机杂化 高分子絮凝剂 聚丙烯酰胺 絮凝
下载PDF
Understand the Temperature Sensing Behavior of Solid-state Polymerized PEDOT Hybrid Based on X-ray Scattering Studies
15
作者 Zhen-Hang He Guang-Feng Liu +3 位作者 Ze-Kun Zhou Zhen Liu Yi-Shu Zeng Peng Zhang 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第1期105-112,I0010,共9页
Poly(3,4-ethylenedioxythiophene)(PEDOT) is one of the most successful conductive polymers that recently has been used in wearable sensors for human health monitoring. In this work, we prepared a series of PEDOT hybrid... Poly(3,4-ethylenedioxythiophene)(PEDOT) is one of the most successful conductive polymers that recently has been used in wearable sensors for human health monitoring. In this work, we prepared a series of PEDOT hybrids consisting of PEDOT, sodium poly(styrene sulfonate)(PSSNa) and polyethylene oxide(PEO), and their preparation could be scaled-up via an adapted solid-state polymerization process. The resistance of the as-prepared PEDOT:PSS/PEO hybrid shows clear temperature response, i.e., it decreases almost linearly with the temperature increase. To understand this phenomenon, the in situ synchrotron radiation wide-and small-angle X-ray scattering(WAXS/SAXS) characterizations were undertaken to study the temperature-dependent microstructure change of the PEDOT:PSS/PEO hybrid. It demonstrated that PEDOT formed conductive paths in the hybrids, which were not destroyed by the PEO crystallization. As temperature increased, the PEO crystals' melting and the accompanying reorganization of PEDOT chains endowed the hybrid sample temperature responsiveness. Based on these fundamental knowledges, the hybrid materials were used to fabricate flexible wearable sensor that showing temperature sensing performance with an accuracy of 1 ℃. These findings shed lights on the scalable manufacturing of wearable sensors for body temperature monitoring. 展开更多
关键词 Solid-state polymerization PEDOT hybrid Structure-property correlation X-ray scattering
原文传递
Synthesis and Characterization of Poly(St-co-BA) Latex with an Organic-Inorganic Hybrid Compound as Emulsifier 被引量:5
16
作者 袁俊杰 周树学 +1 位作者 廖建和 武利民 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2003年第4期483-488,共6页
A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size an... A poly (St-co-BA) latex was successfully synthesized by using an organic-inorganic hybrid compound (OIHC), an aliphatic carboxylate sodium/nano-silica composite, as the emulsifier, and investigated by particle size analyzer, transmission electron microscope (TEM), optical contact angle measurement (OCA) and dynamic mechanical analyzer (DMA). It was found that the protective agent, sodium polyacrylate (PA),could obviously improve the polymerization stability and the functional monomer, glycidyl methacrylate (GMA), could enhance the store stability of the latex. The particle size of poly(St-co-BA) latex decreased and then leveled off as OIHC content increased. TEM shows that the prepared polymers were actually organic-inorganic nanocomposites, and these films have better waterproof property than those prepared by traditional poly(St-co-BA) latex or organic silicone modified poly(St-co-BA) latex. The nanocomposite polymer has much higher glass transition temperature than organic silicone modified poly(St-co-BA) polymer containing the same organic silicone content. 展开更多
关键词 organic-inorganic hybrid compound emulsion polymerization NANOCOMPOSITE
下载PDF
A New Type of Hybrid Fish-like Microrobot 被引量:10
17
作者 Kinji Asaka 《International Journal of Automation and computing》 EI 2006年第4期358-365,共8页
In order to develop a new type of fish-like microrobot with swimming, walking, and floating motions, in our past research, we developed a hybrid microrobot actuated by ionic conducting polymer film (ICPF) actuators.... In order to develop a new type of fish-like microrobot with swimming, walking, and floating motions, in our past research, we developed a hybrid microrobot actuated by ionic conducting polymer film (ICPF) actuators. But the microrobot had some problems in walking and floating motions. In this paper, we propose a concept of hybrid microrobot (see Fig. 1). The microrobot is actuated by a pair of caudal fins, a base with legs and an array of artificial swim bladders. We have developed a prototype of the base with legs and one artificial swim bladder, respectively, and carried out experiments for evaluating their characteristics. Experimental results show the base with legs can realize walking speed of 6 mm/s and rotating speed of 7.1 degrees/s respectively, and the prototype of the artificial swim bladder has a maximum floatage of 2.6 mN. The experimental results also indicate that the microrobot has some advantages, such as walking motion with 2 degrees of freedom, the walking ability on rough surface (sand paper), the controllable floatage, etc. This kind of fish-like microrobot is expected for industrial and medical applications. 展开更多
关键词 Biomimetic locomotion ionic conducting polymer film (ICPF) actuator hybrid microrobot underwater microrobot
下载PDF
Hybrid supercapacitor based on polyaniline doped with lithium salt and activated carbon electrodes 被引量:2
18
作者 方静 崔沐 +3 位作者 卢海 张治安 赖延清 李劼 《Journal of Central South University》 SCIE EI CAS 2009年第3期434-439,共6页
Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon e... Polyaniline(PANI) nanofiber was synthesized by interfacial polymerization utilizing the interface between HC1 and CCl4. The hybrid type supercapacitors (PLi/C) based on Li-doping polyaniline and activated carbon electrode were fabricated and compared with the redox type capacitors (PLi/PLi) based on two uniformly Li-doping polyaniline electrodes. The electrochemical performances of the two types of supercapacitors were characterized in non-aqueous electrolyte. PLi/C supercapacitors have a wider effective energy storage potential range and a higher upper potential. At the same time, the PLi/C supercapacitor exhibits a specific capacity of 120.93 F/g at initial discharge and retains 80% after 500 cycles. The ohmic internal resistance (REs) of PLi/C supercapacitor is 5.0 Ω, which is smaller than that of PLi/PLi capacitor (5.5 Ω). Moreover, it can be seen that EtgNBF4 organic solution is more suitable for using as organic electrolyte of PLi/C capacitor compared with organic solution containing LiPFr. 展开更多
关键词 POLYANILINE Li salt hybrid supercapacitor conducting polymer DOPING
下载PDF
Electrochemical Impedance Analysis of Biofunctionalized Conducting Polymer-Modified Graphene-CNTs Nanocomposite for Protein Detection 被引量:1
19
作者 Shobhita Singal Avanish K.Srivastava Rajesh 《Nano-Micro Letters》 SCIE EI CAS 2017年第1期104-112,共9页
We report an electrodeposited poly(pyrrole-co-pyrrolepropylic acid) copolymer modified electroactive graphene-carbon nanotubes composite deposited on a glassy carbon electrode to detect the protein antigen(cTnI). The ... We report an electrodeposited poly(pyrrole-co-pyrrolepropylic acid) copolymer modified electroactive graphene-carbon nanotubes composite deposited on a glassy carbon electrode to detect the protein antigen(cTnI). The copolymer provides pendant carboxyl groups for the site-specific covalent immobilization of protein antibody, antitroponin I. The hybrid nanocomposite was used as a transducer for biointerfacial impedance sensing for cTnI detection.The results show that the hybrid exhibits a pseudo capacitive behaviour with a maximum phase angle of 49° near 1 Hz,which is due to the inhomogeneous and porous structure of the hybrid composition. The constant phase element of copolymer is 0.61(n = 0.61), whereas, it is 0.88(n = 0.88) for the hybrid composites, indicating a comparatively homogeneous microstructure after biomolecular functionalization. The transducer shows a linear change in charge transfer characteristic(R_(et)) on cTnI immunoreaction for spiked human serum in the concentration range of 1.0 pg mL^(-1)–10.0 ng mL^(-1). The sensitivity of the transducer is 167.8 ± 14.2 Ω cm^2 per decade, and it also exhibits high specificity and good reproducibility. 展开更多
关键词 Conducting polymer Graphene Carbon nanotube hybrid TRANSDUCER Protein antigen cTnI Electrochemical impedance
下载PDF
Novel hybrid FRP tubular columns for sustainable mining infrastructure:Recent research at University of Wollongong 被引量:1
20
作者 Yu Tao Remennikov Alex M. 《International Journal of Mining Science and Technology》 SCIE EI 2014年第3期311-316,共6页
This paper introduces, for applications in the mining industry, an innovative hybrid column form which consists of an inner steel tube, an outer fibre-reinforced polymer(FRP) tube and an annular concrete infill betwee... This paper introduces, for applications in the mining industry, an innovative hybrid column form which consists of an inner steel tube, an outer fibre-reinforced polymer(FRP) tube and an annular concrete infill between them. The two tubes may be concentrically placed to produce a section form more suitable for columns, or eccentrically placed to produce a section form more suitable for beams. The FRP is combined with steel and concrete in these hybrid structural members in such a way that the advantages of FRP are appropriately exploited while its disadvantages are minimized. As a result, these hybrid members possess excellent corrosion resistance as well as excellent ductility and seismic resistance. This paper summarizes existing research on this new form of structural members, and discusses their potential applications in mining infrastructure before presenting a summary of the recent and current studies at University of Wollongong(UOW) on their structural behaviour and design. 展开更多
关键词 hybrid column Tubular column Fibre reinforced polymer Sustainable mining infrastructure
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部