期刊文献+
共找到227篇文章
< 1 2 12 >
每页显示 20 50 100
Optimizing Two-Phase Flow Heat Transfer:DCS Hybrid Modeling and Automation in Coal-Fired Power Plant Boilers
1
作者 Ming Yan Caijiang Lu +3 位作者 Pan Shi Meiling Zhang Jiawei Zhang Liang Wang 《Frontiers in Heat and Mass Transfer》 EI 2024年第2期615-631,共17页
In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired ... In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges. 展开更多
关键词 Two-phase flow coal-fired boiler oxygen content of flue gas carbon content in fly ash hybrid modeling automation control
下载PDF
Hybrid modeling for carbon monoxide gas-phase catalytic coupling to synthesize dimethyl oxalate process
2
作者 Shida Gao Cuimei Bo +3 位作者 Chao Jiang Quanling Zhang Genke Yang Jian Chu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期234-250,共17页
Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic ... Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques. 展开更多
关键词 Carbon monoxide Dynamic modeling hybrid model Reaction kinetics Semi-supervised learning
下载PDF
Universal and efficient hybrid modeling and direct slicing method for additive manufacturing processes
3
作者 Sen-Lin Wang Li-Chao Zhang +4 位作者 Chao Cai Ming-Kai Tang Si Chen Jiang Huang Yu-Sheng Shi 《Advances in Manufacturing》 SCIE EI CAS CSCD 2024年第2期300-316,共17页
Model design and slicing contour generation in additive manufacturing(AM)data processing face challenges in terms of efficiency and scalability when stereolithography files generated by complex functionally graded str... Model design and slicing contour generation in additive manufacturing(AM)data processing face challenges in terms of efficiency and scalability when stereolithography files generated by complex functionally graded structures have millions of faces.This paper proposes a hybrid modeling and direct slicing method for AM to efficiently construct and handle complex three-dimensional(3D)models.All 3D solids,including conformal multigradient structures,were uniformly described using a small amount of data via signed distance fields.The hybrid representations were quickly discretized into numerous disordered directed lines using an improved marching squares algorithm.By establishing a directional HashMap to construct the topological relationship between lines,a connecting algorithm with linear time complexity is proposed to generate slicing contours for manufacturing.This method replaces the mesh reconstruction and Boolean operation stages and can efficiently construct complex conformal gradient models of arbitrary topologies through hybrid modeling.Moreover,the time and memory consumption of direct slicing are much lower than those of previous methods when handling hybrid models with hundreds of millions of faces after mesh reconstruction. 展开更多
关键词 Additive manufacturing(AM) hybrid modeling Direct slicing Signed distance field
原文传递
Spatial Heterogeneity Modeling Using Machine Learning Based on a Hybrid of Random Forest and Convolutional Neural Network (CNN)
4
作者 Amadou Kindy Barry Anthony Waititu Gichuhi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2024年第3期319-347,共29页
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p... Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas. 展开更多
关键词 Spatial Heterogeneity Spatial Data Feature Selection STANDARDIZATION Machine Learning Models hybrid Models
下载PDF
Hybrid Data-Driven and Mechanistic Modeling Approaches for Multiscale Material and Process Design 被引量:7
5
作者 Teng Zhou Rafiqul Gani Kai Sundmacher 《Engineering》 SCIE EI 2021年第9期1231-1238,共8页
The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this chal... The world’s increasing population requires the process industry to produce food,fuels,chemicals,and consumer products in a more efficient and sustainable way.Functional process materials lie at the heart of this challenge.Traditionally,new advanced materials are found empirically or through trial-and-error approaches.As theoretical methods and associated tools are being continuously improved and computer power has reached a high level,it is now efficient and popular to use computational methods to guide material selection and design.Due to the strong interaction between material selection and the operation of the process in which the material is used,it is essential to perform material and process design simultaneously.Despite this significant connection,the solution of the integrated material and process design problem is not easy because multiple models at different scales are usually required.Hybrid modeling provides a promising option to tackle such complex design problems.In hybrid modeling,the material properties,which are computationally expensive to obtain,are described by data-driven models,while the well-known process-related principles are represented by mechanistic models.This article highlights the significance of hybrid modeling in multiscale material and process design.The generic design methodology is first introduced.Six important application areas are then selected:four from the chemical engineering field and two from the energy systems engineering domain.For each selected area,state-ofthe-art work using hybrid modeling for multiscale material and process design is discussed.Concluding remarks are provided at the end,and current limitations and future opportunities are pointed out. 展开更多
关键词 DATA-DRIVEN Surrogate model Machine learning hybrid modeling Material design Process optimization
下载PDF
Hybrid Modeling for Soft Sensing of Molten Steel Temperature in LF 被引量:5
6
作者 TIAN Hui-xin MAO Zhi-zhong WANG An-na 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2009年第4期1-6,共6页
Aiming at the limitations of traditional thermal model and intelligent model, a new hybrid model is established for soft sensing of the molten steel temperature in LF. Firstly, a thermal model based on energy conserva... Aiming at the limitations of traditional thermal model and intelligent model, a new hybrid model is established for soft sensing of the molten steel temperature in LF. Firstly, a thermal model based on energy conservation is described; and then, an improved intelligent model based on process data is presented by ensemble ELM (extreme learning machine) for predicting the molten steel temperature in LF. Secondly, the self-adaptive data fusion is pro- posed as a hybrid modeling method to combine the thermal model with the intelligent model. The new hybrid model could complement mutual advantage of two models by combination. It can overcome the shortcoming of parameters obtained on-line hardly in a thermal model and the disadvantage of lacking the analysis of ladle furnace metallurgical process in an intelligent model. The new hybrid model is applied to a 300 t LF in Baoshan Iron and Steel Co Ltd for predicting the molten steel temperature. The experiments demonstrate that the hybrid model has good generalization performance and high accuracy. 展开更多
关键词 ladle furnace hybrid modeling soft sensing thermal model data fusion
原文传递
Hybrid LEAP modeling method for long-term energy demand forecasting of regions with limited statistical data 被引量:3
7
作者 CHEN Rui RAO Zheng-hua LIAO Sheng-ming 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第8期2136-2148,共13页
An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited i... An accurate long-term energy demand forecasting is essential for energy planning and policy making. However, due to the immature energy data collecting and statistical methods, the available data are usually limited in many regions. In this paper, on the basis of comprehensive literature review, we proposed a hybrid model based on the long-range alternative energy planning (LEAP) model to improve the accuracy of energy demand forecasting in these regions. By taking Hunan province, China as a typical case, the proposed hybrid model was applied to estimating the possible future energy demand and energy-saving potentials in different sectors. The structure of LEAP model was estimated by Sankey energy flow, and Leslie matrix and autoregressive integrated moving average (ARIMA) models were used to predict the population, industrial structure and transportation turnover, respectively. Monte-Carlo method was employed to evaluate the uncertainty of forecasted results. The results showed that the hybrid model combined with scenario analysis provided a relatively accurate forecast for the long-term energy demand in regions with limited statistical data, and the average standard error of probabilistic distribution in 2030 energy demand was as low as 0.15. The prediction results could provide supportive references to identify energy-saving potentials and energy development pathways. 展开更多
关键词 energy demand forecasting with limited data hybrid LEAP model ARIMA model Leslie matrix Monte-Carlo method
下载PDF
Locally weighted learning based hybrid intelligence models for groundwater potential mapping and modeling: A case study at Gia Lai province, Vietnam 被引量:1
8
作者 Hoang Phan Hai Yen Binh Thai Pham +7 位作者 Tran Van Phong Duong Hai Ha Romulus Costache Hiep Van Le Huu Duy Nguyen Mahdis Amiri Nguyen Van Tao Indra Prakash 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第5期54-68,共15页
The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensembl... The groundwater potential map is an important tool for a sustainable water management and land use planning,particularly for agricultural countries like Vietnam.In this article,we proposed new machine learning ensemble techniques namely AdaBoost ensemble(ABLWL),Bagging ensemble(BLWL),Multi Boost ensemble(MBLWL),Rotation Forest ensemble(RFLWL)with Locally Weighted Learning(LWL)algorithm as a base classifier to build the groundwater potential map of Gia Lai province in Vietnam.For this study,eleven conditioning factors(aspect,altitude,curvature,slope,Stream Transport Index(STI),Topographic Wetness Index(TWI),soil,geology,river density,rainfall,land-use)and 134 wells yield data was used to create training(70%)and testing(30%)datasets for the development and validation of the models.Several statistical indices were used namely Positive Predictive Value(PPV),Negative Predictive Value(NPV),Sensitivity(SST),Specificity(SPF),Accuracy(ACC),Kappa,and Receiver Operating Characteristics(ROC)curve to validate and compare performance of models.Results show that performance of all the models is good to very good(AUC:0.75 to 0.829)but the ABLWL model with AUC=0.89 is the best.All the models applied in this study can support decision-makers to streamline the management of the groundwater and to develop economy not only of specific territories but also in other regions across the world with minor changes of the input parameters. 展开更多
关键词 Locally weighted learning hybrid models Groundwater potential GIS VIETNAM
下载PDF
Hybrid model for BOF oxygen blowing time prediction based on oxygen balance mechanism and deep neural network 被引量:3
9
作者 Xin Shao Qing Liu +3 位作者 Zicheng Xin Jiangshan Zhang Tao Zhou Shaoshuai Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CSCD 2024年第1期106-117,共12页
The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based ... The amount of oxygen blown into the converter is one of the key parameters for the control of the converter blowing process,which directly affects the tap-to-tap time of converter. In this study, a hybrid model based on oxygen balance mechanism (OBM) and deep neural network (DNN) was established for predicting oxygen blowing time in converter. A three-step method was utilized in the hybrid model. First, the oxygen consumption volume was predicted by the OBM model and DNN model, respectively. Second, a more accurate oxygen consumption volume was obtained by integrating the OBM model and DNN model. Finally, the converter oxygen blowing time was calculated according to the oxygen consumption volume and the oxygen supply intensity of each heat. The proposed hybrid model was verified using the actual data collected from an integrated steel plant in China, and compared with multiple linear regression model, OBM model, and neural network model including extreme learning machine, back propagation neural network, and DNN. The test results indicate that the hybrid model with a network structure of 3 hidden layer layers, 32-16-8 neurons per hidden layer, and 0.1 learning rate has the best prediction accuracy and stronger generalization ability compared with other models. The predicted hit ratio of oxygen consumption volume within the error±300 m^(3)is 96.67%;determination coefficient (R^(2)) and root mean square error (RMSE) are0.6984 and 150.03 m^(3), respectively. The oxygen blow time prediction hit ratio within the error±0.6 min is 89.50%;R2and RMSE are0.9486 and 0.3592 min, respectively. As a result, the proposed model can effectively predict the oxygen consumption volume and oxygen blowing time in the converter. 展开更多
关键词 basic oxygen furnace oxygen consumption oxygen blowing time oxygen balance mechanism deep neural network hybrid model
下载PDF
MODELING AND IMPLEMENTATION OF SPEED GOVERNOR FOR THE HYBRID ELECTRIC VEHICLE ENGINE 被引量:1
10
作者 Feng Qishan Zhang Jianwu Yin Chengliang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第4期603-608,共6页
A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinde... A speed control analysis for an in-line gasoline fueled internal combustion (IC) engine is presented for the purpose of alleviation of high frequency oscillations in engine revolutions. A dynamic cylinder-by-cylinder model is proposed, base on slider-crank mechanism, which is extended to develop a digital governor providing a high fidelity estimation of rotary speed oscillation for hybrid vehicle engines. A modified PID controller that P and I gain is placed in feedback path is also described for hybrid electric vehicle (HEV) engine speed regulation, By comparison between measured and estimated signals, it is demonstrated that a good agreement has been achieved and the governor behaves an excellent damping speed ripple. 展开更多
关键词 Digital speed governor Engine dynamic model Slider-crank mechanism hybrid electric vehicle (HEV)
下载PDF
Randomness in the Hybrid Modeling and Simulation of Insulin Secretion Pathways in Pancreatic Islets
11
作者 Yang Pu David C.Samuels +1 位作者 Layne T.Watson Yang Cao 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2015年第5期441-452,共12页
Insulin secreted by pancreatic islet ˇ-cells is the principal regulating hormone of glucose metabolism.Disruption of insulin secretion may cause glucose to accumulate in the blood, and result in diabetes mellitus.Alt... Insulin secreted by pancreatic islet ˇ-cells is the principal regulating hormone of glucose metabolism.Disruption of insulin secretion may cause glucose to accumulate in the blood, and result in diabetes mellitus.Although deterministic models of the insulin secretion pathway have been developed, the stochastic aspect of this biological pathway has not been explored. The first step in this direction presented here is a hybrid model of the insulin secretion pathway, in which the delayed rectifying KCchannels are treated as stochastic events. This hybrid model can not only reproduce the oscillation dynamics as the deterministic model does, but can also capture stochastic dynamics that the deterministic model does not. To measure the insulin oscillation system behavior, a probability-based measure is proposed and applied to test the effectiveness of a new remedy. 展开更多
关键词 insulin secretion mathematical modeling hybrid model and simulation stochastic dynamics
原文传递
Total ionizing dose effect modeling method for CMOS digital-integrated circuit
12
作者 Bo Liang Jin-Hui Liu +3 位作者 Xiao-Peng Zhang Gang Liu Wen-Dan Tan Xin-Dan Zhang 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期32-46,共15页
Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID eff... Simulating the total ionizing dose(TID)of an electrical system using transistor-level models can be difficult and expensive,particularly for digital-integrated circuits(ICs).In this study,a method for modeling TID effects in complementary metaloxide semiconductor(CMOS)digital ICs based on the input/output buffer information specification(IBIS)was proposed.The digital IC was first divided into three parts based on its internal structure:the input buffer,output buffer,and functional area.Each of these three parts was separately modeled.Using the IBIS model,the transistor V-I characteristic curves of the buffers were processed,and the physical parameters were extracted and modeled using VHDL-AMS.In the functional area,logic functions were modeled in VHDL according to the data sheet.A golden digital IC model was developed by combining the input buffer,output buffer,and functional area models.Furthermore,the golden ratio was reconstructed based on TID experimental data,enabling the assessment of TID effects on the threshold voltage,carrier mobility,and time series of the digital IC.TID experiments were conducted using a CMOS non-inverting multiplexer,NC7SZ157,and the results were compared with the simulation results,which showed that the relative errors were less than 2%at each dose point.This confirms the practicality and accuracy of the proposed modeling method.The TID effect model for digital ICs developed using this modeling technique includes both the logical function of the IC and changes in electrical properties and functional degradation impacted by TID,which has potential applications in the design of radiation-hardening tolerance in digital ICs. 展开更多
关键词 CMOS digital-integrated circuit Total ionizing dose IBIS model Behavior-physical hybrid model Physical parameters
下载PDF
Review of Recent Trends in the Hybridisation of Preprocessing-Based and Parameter Optimisation-Based Hybrid Models to Forecast Univariate Streamflow
13
作者 Baydaa Abdul Kareem Salah L.Zubaidi +1 位作者 Nadhir Al-Ansari Yousif Raad Muhsen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第1期1-41,共41页
Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques... Forecasting river flow is crucial for optimal planning,management,and sustainability using freshwater resources.Many machine learning(ML)approaches have been enhanced to improve streamflow prediction.Hybrid techniques have been viewed as a viable method for enhancing the accuracy of univariate streamflow estimation when compared to standalone approaches.Current researchers have also emphasised using hybrid models to improve forecast accuracy.Accordingly,this paper conducts an updated literature review of applications of hybrid models in estimating streamflow over the last five years,summarising data preprocessing,univariate machine learning modelling strategy,advantages and disadvantages of standalone ML techniques,hybrid models,and performance metrics.This study focuses on two types of hybrid models:parameter optimisation-based hybrid models(OBH)and hybridisation of parameter optimisation-based and preprocessing-based hybridmodels(HOPH).Overall,this research supports the idea thatmeta-heuristic approaches precisely improveML techniques.It’s also one of the first efforts to comprehensively examine the efficiency of various meta-heuristic approaches(classified into four primary classes)hybridised with ML techniques.This study revealed that previous research applied swarm,evolutionary,physics,and hybrid metaheuristics with 77%,61%,12%,and 12%,respectively.Finally,there is still room for improving OBH and HOPH models by examining different data pre-processing techniques and metaheuristic algorithms. 展开更多
关键词 Univariate streamflow machine learning hybrid model data pre-processing performance metrics
下载PDF
HybridGAD: Identification of AI-Generated Radiology Abstracts Based on a Novel Hybrid Model with Attention Mechanism
14
作者 TugbaÇelikten Aytug Onan 《Computers, Materials & Continua》 SCIE EI 2024年第8期3351-3377,共27页
Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well a... Class Title:Radiological imaging method a comprehensive overview purpose.This GPT paper provides an overview of the different forms of radiological imaging and the potential diagnosis capabilities they offer as well as recent advances in the field.Materials and Methods:This paper provides an overview of conventional radiography digital radiography panoramic radiography computed tomography and cone-beam computed tomography.Additionally recent advances in radiological imaging are discussed such as imaging diagnosis and modern computer-aided diagnosis systems.Results:This paper details the differences between the imaging techniques the benefits of each and the current advances in the field to aid in the diagnosis of medical conditions.Conclusion:Radiological imaging is an extremely important tool in modern medicine to assist in medical diagnosis.This work provides an overview of the types of imaging techniques used the recent advances made and their potential applications. 展开更多
关键词 Generative artificial intelligence AI-generated text detection attention mechanism hybrid model for text classification
下载PDF
Different El Niño Flavors and Associated Atmospheric Teleconnections as Simulated in a Hybrid Coupled Model
15
作者 Junya HU Hongna WANG +1 位作者 Chuan GAO Rong-Hua ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第5期864-880,共17页
A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Ni... A previously developed hybrid coupled model(HCM)is composed of an intermediate tropical Pacific Ocean model and a global atmospheric general circulation model(AGCM),denoted as HCMAGCM.In this study,different El Niño flavors,namely the Eastern-Pacific(EP)and Central-Pacific(CP)types,and the associated global atmospheric teleconnections are examined in a 1000-yr control simulation of the HCMAGCM.The HCMAGCM indicates profoundly different characteristics among EP and CP El Niño events in terms of related oceanic and atmospheric variables in the tropical Pacific,including the amplitude and spatial patterns of sea surface temperature(SST),zonal wind stress,and precipitation anomalies.An SST budget analysis indicates that the thermocline feedback and zonal advective feedback dominantly contribute to the growth of EP and CP El Niño events,respectively.Corresponding to the shifts in the tropical rainfall and deep convection during EP and CP El Niño events,the model also reproduces the differences in the extratropical atmospheric responses during the boreal winter.In particular,the EP El Niño tends to be dominant in exciting a poleward wave train pattern to the Northern Hemisphere,while the CP El Niño tends to preferably produce a wave train similar to the Pacific North American(PNA)pattern.As a result,different climatic impacts exist in North American regions,with a warm-north and cold-south pattern during an EP El Niño and a warm-northeast and cold-southwest pattern during a CP El Niño,respectively.This modeling result highlights the importance of internal natural processes within the tropical Pacific as they relate to the genesis of ENSO diversity because the active ocean–atmosphere coupling is allowed only in the tropical Pacific within the framework of the HCMAGCM. 展开更多
关键词 hybrid coupled model tropical Pacific Ocean global atmosphere Eastern/Central-Pacific El Niño atmospheric teleconnections
下载PDF
Enhancing Software Effort Estimation:A Hybrid Model Combining LSTM and Random Forest
16
作者 Badana Mahesh Mandava Kranthi Kiran 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第4期42-51,共10页
Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates... Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects. 展开更多
关键词 software effort estimation hybrid model ensemble learning LSTM temporal dependencies non⁃linear relationships
下载PDF
Simultaneous Identification of Thermophysical Properties of Semitransparent Media Using a Hybrid Model Based on Artificial Neural Network and Evolutionary Algorithm
17
作者 LIU Yang HU Shaochuang 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第4期458-475,共18页
A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductiv... A hybrid identification model based on multilayer artificial neural networks(ANNs) and particle swarm optimization(PSO) algorithm is developed to improve the simultaneous identification efficiency of thermal conductivity and effective absorption coefficient of semitransparent materials.For the direct model,the spherical harmonic method and the finite volume method are used to solve the coupled conduction-radiation heat transfer problem in an absorbing,emitting,and non-scattering 2D axisymmetric gray medium in the background of laser flash method.For the identification part,firstly,the temperature field and the incident radiation field in different positions are chosen as observables.Then,a traditional identification model based on PSO algorithm is established.Finally,multilayer ANNs are built to fit and replace the direct model in the traditional identification model to speed up the identification process.The results show that compared with the traditional identification model,the time cost of the hybrid identification model is reduced by about 1 000 times.Besides,the hybrid identification model remains a high level of accuracy even with measurement errors. 展开更多
关键词 semitransparent medium coupled conduction-radiation heat transfer thermophysical properties simultaneous identification multilayer artificial neural networks(ANNs) evolutionary algorithm hybrid identification model
下载PDF
A Novel Hybrid Architecture for Superior IoT Threat Detection through Real IoT Environments
18
作者 Bassam Mohammad Elzaghmouri Yosef Hasan Fayez Jbara +7 位作者 Said Elaiwat Nisreen Innab Ahmed Abdelgader Fadol Osman Mohammed Awad Mohammed Ataelfadiel Farah H.Zawaideh Mouiad Fadeil Alawneh Asef Al-Khateeb Marwan Abu-Zanona 《Computers, Materials & Continua》 SCIE EI 2024年第11期2299-2316,共18页
As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an ... As the Internet of Things(IoT)continues to expand,incorporating a vast array of devices into a digital ecosystem also increases the risk of cyber threats,necessitating robust defense mechanisms.This paper presents an innovative hybrid deep learning architecture that excels at detecting IoT threats in real-world settings.Our proposed model combines Convolutional Neural Networks(CNN),Bidirectional Long Short-Term Memory(BLSTM),Gated Recurrent Units(GRU),and Attention mechanisms into a cohesive framework.This integrated structure aims to enhance the detection and classification of complex cyber threats while accommodating the operational constraints of diverse IoT systems.We evaluated our model using the RT-IoT2022 dataset,which includes various devices,standard operations,and simulated attacks.Our research’s significance lies in the comprehensive evaluation metrics,including Cohen Kappa and Matthews Correlation Coefficient(MCC),which underscore the model’s reliability and predictive quality.Our model surpassed traditional machine learning algorithms and the state-of-the-art,achieving over 99.6%precision,recall,F1-score,False Positive Rate(FPR),Detection Time,and accuracy,effectively identifying specific threats such as Message Queuing Telemetry Transport(MQTT)Publish,Denial of Service Synchronize network packet crafting tool(DOS SYN Hping),and Network Mapper Operating System Detection(NMAP OS DETECTION).The experimental analysis reveals a significant improvement over existing detection systems,significantly enhancing IoT security paradigms.Through our experimental analysis,we have demonstrated a remarkable enhancement in comparison to existing detection systems,which significantly strength-ens the security standards of IoT.Our model effectively addresses the need for advanced,dependable,and adaptable security solutions,serving as a symbol of the power of deep learning in strengthening IoT ecosystems amidst the constantly evolving cyber threat landscape.This achievement marks a significant stride towards protecting the integrity of IoT infrastructure,ensuring operational resilience,and building privacy in this groundbreaking technology. 展开更多
关键词 A hybrid deep learning model IoT threat detection real IoT environments CYBERSECURITY attention mechanism
下载PDF
Advancing Type II Diabetes Predictions with a Hybrid LSTM-XGBoost Approach
19
作者 Ayoub Djama Waberi Ronald Waweru Mwangi Richard Maina Rimiru 《Journal of Data Analysis and Information Processing》 2024年第2期163-188,共26页
In this paper, we explore the ability of a hybrid model integrating Long Short-Term Memory (LSTM) networks and eXtreme Gradient Boosting (XGBoost) to enhance the prediction accuracy of Type II Diabetes Mellitus, which... In this paper, we explore the ability of a hybrid model integrating Long Short-Term Memory (LSTM) networks and eXtreme Gradient Boosting (XGBoost) to enhance the prediction accuracy of Type II Diabetes Mellitus, which is caused by a combination of genetic, behavioral, and environmental factors. Utilizing comprehensive datasets from the Women in Data Science (WiDS) Datathon for the years 2020 and 2021, which provide a wide range of patient information required for reliable prediction. The research employs a novel approach by combining LSTM’s ability to analyze sequential data with XGBoost’s strength in handling structured datasets. To prepare this data for analysis, the methodology includes preparing it and implementing the hybrid model. The LSTM model, which excels at processing sequential data, detects temporal patterns and trends in patient history, while XGBoost, known for its classification effectiveness, converts these patterns into predictive insights. Our results demonstrate that the LSTM-XGBoost model can operate effectively with a prediction accuracy achieving 0.99. This study not only shows the usefulness of the hybrid LSTM-XGBoost model in predicting diabetes but it also provides the path for future research. This progress in machine learning applications represents a significant step forward in healthcare, with the potential to alter the treatment of chronic diseases such as diabetes and lead to better patient outcomes. 展开更多
关键词 LSTM XGBoost hybrid Models Machine Learning. Deep Learning
下载PDF
APPLICATION OF HYBRID AERO-ENGINE MODEL FOR INTEGRATED FLIGHT/PROPULSION OPTIMAL CONTROL 被引量:4
20
作者 王健康 张海波 +1 位作者 孙健国 李永进 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第1期16-24,共9页
The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gr... The real-time capability of integrated flight/propulsion optimal control (IFPOC) is studied. An appli- cation is proposed for IFPOC by combining the onboard hybrid aero-engine model with sequential quadratic pro- gramming (SQP). Firstly, a steady-state hybrid aero-engine model is designed in the whole flight envelope with a dramatic enhancement of real-time capability. Secondly, the aero-engine performance seeking control including the maximum thrust mode and the minimum fuel-consumption mode is performed by SQP. Finally, digital simu- lations for cruise and accelerating flight are carried out. Results show that the proposed method improves real- time capability considerably with satisfactory effectiveness of optimization. 展开更多
关键词 integrated flight/propulsion optimal control AERO-ENGINE hybrid model performance seeking con- trol sequential quadratic programming
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部