The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consis...The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically.展开更多
A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminesce...A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminescent substituted acetylene(2- ethynyl-7-(4-(4-methylstyryl)styryl)-9,9-dioctyl-9H-fluorene(EF)) in high yield.The hybrid nanocomposite was soluble in common solvents such as CH_2Cl_2,CHCl_3,THF and 1,4-dioxane.Its structure and property were characterized by FTIR, NMR,TGA,UV and PL,respectively.The results show that the hybrid nanocomposite with high thermal stability emits stable blue light as a result of photo excitation and possesses high photoluminescence quantum efficiency(φ_(FL)).展开更多
Low-dielectric-constant poly(acetoxystyrenezhi-co-octavinyl-polyhedral oligomeric silsesquioxane)(PAS-POSS) organicinorganic hybrid nanocomposite was successfully synthesized via one-step free radical polymerization a...Low-dielectric-constant poly(acetoxystyrenezhi-co-octavinyl-polyhedral oligomeric silsesquioxane)(PAS-POSS) organicinorganic hybrid nanocomposite was successfully synthesized via one-step free radical polymerization and characterized by FTIR,high-resolution ~1H NMR,^(29)Si NMR,DSC,TGA,AFM,spectroscopic elhpsometry and dielectric constants measurements. The results show T_g and T_(dec) were elevated dramatically due to the incorporation of inorganic POSS cores.Spectroscopic ellipsometry and dielectric consta...展开更多
We propose a multiscale approach to study the influence of carbon nanotubes’agglomeration on the stability of hybrid nanocomposite plates.The hybrid nanocomposite consists of both macro-and nano-scale reinforcing fib...We propose a multiscale approach to study the influence of carbon nanotubes’agglomeration on the stability of hybrid nanocomposite plates.The hybrid nanocomposite consists of both macro-and nano-scale reinforcing fibers dispersed in a polymer matrix.The equivalent material properties are calculated by coupling the Eshelby-Mori-Tanaka model with the rule of mixture accounting for effects of CNTs inside the generated clusters.Furthermore,an energy based approach is implemented to obtain the governing equations of the problem utilizing a refined higher-order plate theorem.Subsequently,the derived equations are solved by Galerkin’s analytical method to predict the critical buckling load.The influence of various boundary conditions is studied as well.After validation,a set of numerical examples are presented to explain how each variant can affect the plate’s natural frequency.展开更多
In an effort to expand the insulating behavior of adhesives, incorporated nano-sized fillers, such as multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs), are usually selected. Including both MWCN...In an effort to expand the insulating behavior of adhesives, incorporated nano-sized fillers, such as multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs), are usually selected. Including both MWCNTs and GNPs into polymers is assumed to have complementary influence (synergy), providing a new research area. Nevertheless, limited studies have been carried out towards this hybrid direction, as it is challenging to achieve a uniform distribution of both fillers into the polymer matrix. In this work, the addition of MWCNTs and GNPs into the epoxy adhesives has been studied to increase their thermal and electrical conductivity without diminishing their mechanical properties. Three types of nano-reinforced adhesives were developed by using: 1) 2%wt. MWCNTs, 2) 8%wt. GNPs and 3) 1%wt. MWCNTs and 8%wt. GNPs. The production of nano-reinforced adhesives was achieved by using a three-roll milling technique, while during the experimental characterization single lap shear tests, thermal and electrical conductivity measurements were performed. According to the results, the introduction of nano-particles caused significant increases in electrical and thermal conductivity. MWCNTs in content of 2%wt. showed the highest improvement in the electrical conductivity (9 orders of magnitude), while GNPs in content of 8%wt. recorded the highest increase (207%) in the thermal conductivity of nano-reinforced adhesives. Finally, it was observed that the hybrid system successfully contributed to the development of a multi-functional epoxy adhesive with improved thermal and electrical properties without significantly compromising its mechanical properties.展开更多
The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were m...The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were manufactured. The physical and mechanical properties of the manufactured composites were measured according to standard methods. The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites. Also all the reinforced composites with carbon nanotube, glass fiber or bagasse fiber exhibited better properties rather than neat cement.The results indicated that bagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites. The hybrid nanocomposite containing10 % glass fiber, 10 % bagasse fiber and 1.5 % MWCNTs was selected as the best compound.展开更多
Triblock copolymer of poly(p-dioxanone) and polyethylene glycol end-capped with pyrene moieties((Py-PPDO)_2-b-PEG) was synthesized and used as modifier for multi-wall carbon nanotubes(MWCNTs).Nano-aggregates(...Triblock copolymer of poly(p-dioxanone) and polyethylene glycol end-capped with pyrene moieties((Py-PPDO)_2-b-PEG) was synthesized and used as modifier for multi-wall carbon nanotubes(MWCNTs).Nano-aggregates((Py-PPDO)_2-b-PEG@MWCNTs) with shish-kebab like partially wrapped morphology and very good stability were obtained by incorporating the copolymer with MWCNTs.The bare MWCNT sections of(Py-PPDO)_2-b-PEG@MWCNTs were able to induce n-n interactions with graphene(GE) and resulted in a novel GE/(Py-PPDO)_2-b-PEG@MWCNTs hybrid.The dispersity of GE in solution or polymer matrix was therefore greatly improved.The PCL nanocomposite films using GE/(Py-PPDO)_2-bPEG@MWCNTs as hybrid nanofiller exhibited obviously improved mechanical properties especially at very low hybrid nanofiller content.The influence of the nanofiller content and feed ratio of GE/MWCNTs on the mechanical properties of composites films was evaluated.When the feed ratio of GE to MWCNTs is 2:8 and the total loading of nanofiller is only 0.01 wt%,the tensile strength of the composite film increased by 163%and the elongation at break increased by 17% compared to those of neat PCL These results can be attributed to fine dispersion of the nanofillers in PCL matrix and the hybrid interactions between GE and MWCNTs.Therefore,this work provides a novel method for preparing polymer nanocomposites with high mechanical performance and low nanofiller loading.展开更多
In this work, we report a facile method for the preparation of tough and highly stretchable physical hydrogels by dual cross-linking composed of vinyl-hybrid silica nanoparticles(VSNPs) as multivalent covalent cross...In this work, we report a facile method for the preparation of tough and highly stretchable physical hydrogels by dual cross-linking composed of vinyl-hybrid silica nanoparticles(VSNPs) as multivalent covalent cross-linking and hydrogen bonding as physical cross-linking. Poly(acrylic acid) nanocomposite physical hydrogels(NCP gels) are obtained without adding any organic chemical cross-linkers. When the content of VSNPs is 0.7 wt%(relative to the monomer), the NCP gels exhibit good mechanical properties(fracture strength = 370 k Pa, elongation at break = 2200%) and a high swelling capacity in both deionized water(2300 g/g) and saline(220 g/g). Meanwhile, the NCP gels have good recovery ability.展开更多
Three different precursors of boron-aqua and glycerol solutions of boric acid and ethanol solution of trimethyl borate were used for the preparation of organic–inorganic advanced materials. The films and bulk materia...Three different precursors of boron-aqua and glycerol solutions of boric acid and ethanol solution of trimethyl borate were used for the preparation of organic–inorganic advanced materials. The films and bulk materials samples were heat treated at 100, 400, 800?C for 2 h. The hybrid samples were stable and transparent until 100?C. The further increase of temperature to 400?C led to destruction of samples, and at 800?C they were molten. The structural changes during the pyrolysis were studied by Fourier transform infrared spectroscopy, differential thermal analysis, and X-ray diffraction. Details of surface morphology were observed by scanning electron microscopy. The obtained BO_3 and BO_4 groups were identified in the molten materials after pyrolysis. The quantities and order of borate structural units as well as residual carbon in the networks depended on boron precursor type. PVA/PEG/B_2O_3 hybrid materials were proved to be appropriate precursors for synthesizing borate and carboborate glass and carbon/borate glass nanocomposites. To access the impact of the experimental conditions on the structural changes of the nanocomposites, cluster analysis of the IR-spectral data was used as a classification method.展开更多
1 Results The entrapment of biopolymers into silica by the sol-gel technique meets with incompatibility of inorganic and bioorganic components. The aim was to develop a compatible procedure biomimicking the biomineral...1 Results The entrapment of biopolymers into silica by the sol-gel technique meets with incompatibility of inorganic and bioorganic components. The aim was to develop a compatible procedure biomimicking the biomineralization processes in the living nature. A suggested solution in Ref.[1-2] for the biopolymer entrapment into silica matrix is based on a novel silica precursor. The developed approach is distinguished from the common technique for fabrication of hybrid biopolymer-silica nanocomposite materi...展开更多
We report a rapid method for synthesis of zeolitic imidazolate framework 8(ZIF-8)-decorated graphene oxide(GO)composites(ZGO)with good antibacterial properties.The ZGO composites were synthesized at room temperature w...We report a rapid method for synthesis of zeolitic imidazolate framework 8(ZIF-8)-decorated graphene oxide(GO)composites(ZGO)with good antibacterial properties.The ZGO composites were synthesized at room temperature with low GO to metal salt ratios.The samples were characterized by X-ray diffraction,transmission electron microscopy,Fourier transform infrared spectroscopy,thermal gravimetric analysis,and surface area analysis.The characterization results show that ZIF-8 with a size of approximately 120 nm is successfully decorated on the surface of GO sheets with the host ZIF-8 framework maintained in the synthesized composite,but there is a significant reduction in the Brunauer-Emmett-Teller surface area.The antibacterial activities of the samples against Escherichia coli ATCC 11229 and Staphylococcus aureus ATCC 6538 as model strains of gram-negative and-positive bacteria,respectively,were determined by disc diffusion and minimum inhibitory concentration(MIC)tests.ZGO-1.0(1 wt%of ratio of GO to metal salt)shows the highest antibacterial activity with MIC values required to inhibit bacterial growth of E.coli and S.aureus of 5 times lower than those of pristine ZIF-8.Different antibacterial mechanisms are proposed based on field-emission scanning electron microscope images of the two bacteria after contact with the synthesized composite.Overall,owing to the simple synthesis,good stability,low chemical usage,and excellent antibacterial activity of the ZGO composites,they show great potential for application in the field of microbial contamination control.展开更多
文摘The vibration problem of a fluid conveying cylindrical shell consisted of newly developed multi-scale hybrid nanocomposites is solved in the present manuscript within the framework of an analytical solution.The consistent material is considered to be made from an initial matrix strengthened via both macro-and nano-scale reinforcements.The influence of nanofillers’agglomeration,generated due to the high surface to volume ratio in nanostructures,is included by implementing Eshelby-Mori-Tanaka homogenization scheme.Afterwards,the equivalent material properties of the carbon nanotube reinforced(CNTR)nanocomposite are coupled with those of CFs within the framework of a modified rule of mixture.On the other hand,the influences of viscous flow are covered by extending the Navier-Stokes equation for cylinders.A cylindrical coordinate system is chosen and mixed with the infinitesimal strains of first-order shear deformation theory of shells to obtain the motion equations on the basis of the dynamic form of principle of virtual work.Next,the achieved governing equations will be solved by Galerkin’s method to reach the natural frequency of the structure for both simply supported and clamped boundary conditions.Presenting a set of illustrations,effects of each parameter on the dimensionless frequency of nanocomposite shells will be shown graphically.
基金supported by the National Natural Science Fund of China(Nos.90606011 and 50472038)Ph.D.Program Foundation of Ministry of Education of China(No.20070255012)+3 种基金Shanghai Leading Academic Discipline Project(No.B603)the Program of Introducing Talents of Discipline to Universities(No.111-2- 04)Open Project of the State Key Laboratory of Crystal Materials(No.KF0809)Youth Scientific Research Fund of Anhui University and the Excellent Youth Fund in University of Anhui Province(No.2008jq1020)
文摘A novel polyhedral oligomeric silsesquioxane(POSS)-based organic-inorganic hybrid nanocomposite(EF-POSS) was prepared by Pt-catalyzed hydrosilylation reaction of octahydridosilsesquioxane(T_8H_8,POSS) with a luminescent substituted acetylene(2- ethynyl-7-(4-(4-methylstyryl)styryl)-9,9-dioctyl-9H-fluorene(EF)) in high yield.The hybrid nanocomposite was soluble in common solvents such as CH_2Cl_2,CHCl_3,THF and 1,4-dioxane.Its structure and property were characterized by FTIR, NMR,TGA,UV and PL,respectively.The results show that the hybrid nanocomposite with high thermal stability emits stable blue light as a result of photo excitation and possesses high photoluminescence quantum efficiency(φ_(FL)).
基金financially supported by the National Natural Science Foundation of China(Nos.90606011, 50472038 and 2097401)PhD Program Foundation of Ministry of Education of China(No.20070255012)+3 种基金Shanghai Leading Academic Discipline Project(No.B603)Open Project of The State Key Laboratory of Crystal Materials(KF0809)the Program of Introducing Talents of Discipline to Universities(No.111-2-04)Doctoral Dissertation Innovation Project(No.BC200907)
文摘Low-dielectric-constant poly(acetoxystyrenezhi-co-octavinyl-polyhedral oligomeric silsesquioxane)(PAS-POSS) organicinorganic hybrid nanocomposite was successfully synthesized via one-step free radical polymerization and characterized by FTIR,high-resolution ~1H NMR,^(29)Si NMR,DSC,TGA,AFM,spectroscopic elhpsometry and dielectric constants measurements. The results show T_g and T_(dec) were elevated dramatically due to the incorporation of inorganic POSS cores.Spectroscopic ellipsometry and dielectric consta...
文摘We propose a multiscale approach to study the influence of carbon nanotubes’agglomeration on the stability of hybrid nanocomposite plates.The hybrid nanocomposite consists of both macro-and nano-scale reinforcing fibers dispersed in a polymer matrix.The equivalent material properties are calculated by coupling the Eshelby-Mori-Tanaka model with the rule of mixture accounting for effects of CNTs inside the generated clusters.Furthermore,an energy based approach is implemented to obtain the governing equations of the problem utilizing a refined higher-order plate theorem.Subsequently,the derived equations are solved by Galerkin’s analytical method to predict the critical buckling load.The influence of various boundary conditions is studied as well.After validation,a set of numerical examples are presented to explain how each variant can affect the plate’s natural frequency.
文摘In an effort to expand the insulating behavior of adhesives, incorporated nano-sized fillers, such as multi-walled carbon nanotubes (MWCNTs) and graphene nanoplatelets (GNPs), are usually selected. Including both MWCNTs and GNPs into polymers is assumed to have complementary influence (synergy), providing a new research area. Nevertheless, limited studies have been carried out towards this hybrid direction, as it is challenging to achieve a uniform distribution of both fillers into the polymer matrix. In this work, the addition of MWCNTs and GNPs into the epoxy adhesives has been studied to increase their thermal and electrical conductivity without diminishing their mechanical properties. Three types of nano-reinforced adhesives were developed by using: 1) 2%wt. MWCNTs, 2) 8%wt. GNPs and 3) 1%wt. MWCNTs and 8%wt. GNPs. The production of nano-reinforced adhesives was achieved by using a three-roll milling technique, while during the experimental characterization single lap shear tests, thermal and electrical conductivity measurements were performed. According to the results, the introduction of nano-particles caused significant increases in electrical and thermal conductivity. MWCNTs in content of 2%wt. showed the highest improvement in the electrical conductivity (9 orders of magnitude), while GNPs in content of 8%wt. recorded the highest increase (207%) in the thermal conductivity of nano-reinforced adhesives. Finally, it was observed that the hybrid system successfully contributed to the development of a multi-functional epoxy adhesive with improved thermal and electrical properties without significantly compromising its mechanical properties.
文摘The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were manufactured. The physical and mechanical properties of the manufactured composites were measured according to standard methods. The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites. Also all the reinforced composites with carbon nanotube, glass fiber or bagasse fiber exhibited better properties rather than neat cement.The results indicated that bagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites. The hybrid nanocomposite containing10 % glass fiber, 10 % bagasse fiber and 1.5 % MWCNTs was selected as the best compound.
基金financially supported by the National Natural Science Foundation of China(No.21474066)the Foundation for Young Scientists of State Key Laboratory of Polymer Materials Engineering(No.sklpme2014-3-09)
文摘Triblock copolymer of poly(p-dioxanone) and polyethylene glycol end-capped with pyrene moieties((Py-PPDO)_2-b-PEG) was synthesized and used as modifier for multi-wall carbon nanotubes(MWCNTs).Nano-aggregates((Py-PPDO)_2-b-PEG@MWCNTs) with shish-kebab like partially wrapped morphology and very good stability were obtained by incorporating the copolymer with MWCNTs.The bare MWCNT sections of(Py-PPDO)_2-b-PEG@MWCNTs were able to induce n-n interactions with graphene(GE) and resulted in a novel GE/(Py-PPDO)_2-b-PEG@MWCNTs hybrid.The dispersity of GE in solution or polymer matrix was therefore greatly improved.The PCL nanocomposite films using GE/(Py-PPDO)_2-bPEG@MWCNTs as hybrid nanofiller exhibited obviously improved mechanical properties especially at very low hybrid nanofiller content.The influence of the nanofiller content and feed ratio of GE/MWCNTs on the mechanical properties of composites films was evaluated.When the feed ratio of GE to MWCNTs is 2:8 and the total loading of nanofiller is only 0.01 wt%,the tensile strength of the composite film increased by 163%and the elongation at break increased by 17% compared to those of neat PCL These results can be attributed to fine dispersion of the nanofillers in PCL matrix and the hybrid interactions between GE and MWCNTs.Therefore,this work provides a novel method for preparing polymer nanocomposites with high mechanical performance and low nanofiller loading.
基金financially supported by the National Natural Science Foundation of China(No.21474058)State Key Laboratory for Modification of Chemical Fibers and Polymer Materials,Donghua University(No.LK1404)Tsinghua University Scientific Research Project(No.2014Z22069)
文摘In this work, we report a facile method for the preparation of tough and highly stretchable physical hydrogels by dual cross-linking composed of vinyl-hybrid silica nanoparticles(VSNPs) as multivalent covalent cross-linking and hydrogen bonding as physical cross-linking. Poly(acrylic acid) nanocomposite physical hydrogels(NCP gels) are obtained without adding any organic chemical cross-linkers. When the content of VSNPs is 0.7 wt%(relative to the monomer), the NCP gels exhibit good mechanical properties(fracture strength = 370 k Pa, elongation at break = 2200%) and a high swelling capacity in both deionized water(2300 g/g) and saline(220 g/g). Meanwhile, the NCP gels have good recovery ability.
基金supported by the Spanish Ministry of Education and Science (Project CTM2012-39183)the Generalitat de Catalunya (Grup Consolidat 2014SGR1017)support of H2020 program of the European Union (project Materials Networking)
文摘Three different precursors of boron-aqua and glycerol solutions of boric acid and ethanol solution of trimethyl borate were used for the preparation of organic–inorganic advanced materials. The films and bulk materials samples were heat treated at 100, 400, 800?C for 2 h. The hybrid samples were stable and transparent until 100?C. The further increase of temperature to 400?C led to destruction of samples, and at 800?C they were molten. The structural changes during the pyrolysis were studied by Fourier transform infrared spectroscopy, differential thermal analysis, and X-ray diffraction. Details of surface morphology were observed by scanning electron microscopy. The obtained BO_3 and BO_4 groups were identified in the molten materials after pyrolysis. The quantities and order of borate structural units as well as residual carbon in the networks depended on boron precursor type. PVA/PEG/B_2O_3 hybrid materials were proved to be appropriate precursors for synthesizing borate and carboborate glass and carbon/borate glass nanocomposites. To access the impact of the experimental conditions on the structural changes of the nanocomposites, cluster analysis of the IR-spectral data was used as a classification method.
文摘1 Results The entrapment of biopolymers into silica by the sol-gel technique meets with incompatibility of inorganic and bioorganic components. The aim was to develop a compatible procedure biomimicking the biomineralization processes in the living nature. A suggested solution in Ref.[1-2] for the biopolymer entrapment into silica matrix is based on a novel silica precursor. The developed approach is distinguished from the common technique for fabrication of hybrid biopolymer-silica nanocomposite materi...
基金The authors gratefully acknowledge funding from the Post-Doctoral Fellowship Scheme for the projects"Development of Metal-Organic Framework/Graphene Oxide(MOF/GO)Composite Mixed Matrix Membrane for Gas Separation"(grant number PY/2015/05319)"Durable Hollow Fiber Composite Membrane with Bactericidal Properties for Wastewater Treatment"(grant number R.J090301.7809.4J181)through the Universiti Teknologi Malaysia(UTM)and HiCOE.
文摘We report a rapid method for synthesis of zeolitic imidazolate framework 8(ZIF-8)-decorated graphene oxide(GO)composites(ZGO)with good antibacterial properties.The ZGO composites were synthesized at room temperature with low GO to metal salt ratios.The samples were characterized by X-ray diffraction,transmission electron microscopy,Fourier transform infrared spectroscopy,thermal gravimetric analysis,and surface area analysis.The characterization results show that ZIF-8 with a size of approximately 120 nm is successfully decorated on the surface of GO sheets with the host ZIF-8 framework maintained in the synthesized composite,but there is a significant reduction in the Brunauer-Emmett-Teller surface area.The antibacterial activities of the samples against Escherichia coli ATCC 11229 and Staphylococcus aureus ATCC 6538 as model strains of gram-negative and-positive bacteria,respectively,were determined by disc diffusion and minimum inhibitory concentration(MIC)tests.ZGO-1.0(1 wt%of ratio of GO to metal salt)shows the highest antibacterial activity with MIC values required to inhibit bacterial growth of E.coli and S.aureus of 5 times lower than those of pristine ZIF-8.Different antibacterial mechanisms are proposed based on field-emission scanning electron microscope images of the two bacteria after contact with the synthesized composite.Overall,owing to the simple synthesis,good stability,low chemical usage,and excellent antibacterial activity of the ZGO composites,they show great potential for application in the field of microbial contamination control.