The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to an...The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.展开更多
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther...Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artifici...Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.展开更多
Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manu...Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manually.Some swarm intelligence or evolutionary computation algorithms have been effectively employed to seek optimal hyperparameters as a com-binatorial optimization problem.However,these algorithms are prone to get trapped in the local optimal solution as random search strategies are adopted.The inspiration for the hybrid rice optimization(HRO)algorithm is from the breeding technology of three-line hybrid rice in China,which has the advantages of easy implementation,less parameters and fast convergence.In the paper,genetic search is combined with the hybrid rice optimization algorithm(GHRO)and employed to obtain the optimal hyperparameter of the capsule network automatically,that is,a probability search technique and a hybridization strategy belong with the primary HRO.Thirteen benchmark functions are used to evaluate the performance of GHRO.Furthermore,the MNIST,Chest X-Ray(pneumonia),and Chest X-Ray(COVID-19&pneumonia)datasets are also utilized to evaluate the capsule network learnt by GHRO.The experimental results show that GHRO is an effective method for optimizing the hyperparameters of the capsule network,which is able to boost the performance of the capsule network on image classification.展开更多
In the view of the disadvantages of complex method (CM) and electromagnetism-like algorithm (EM), complex electromagnetism-like hybrid algorithm (CEM) was proposed by embedding complex method into electromagnetism-lik...In the view of the disadvantages of complex method (CM) and electromagnetism-like algorithm (EM), complex electromagnetism-like hybrid algorithm (CEM) was proposed by embedding complex method into electromagnetism-like algorithm as local optimization algorithm. CEM was adopted to search the minimum safety factor in slope stability analysis and the results show that CEM holds advantages over EM and CM. It combines the merits of two and is more stable and efficient. For further improvement, two CEM hybrid algorithms based on predatory search (PS) strategies were proposed, both of which consist of modified algorithms and the search area of which is dynamically adjusted by changing restriction. The CEM-PS1 adopts theoretical framework of original predatory search strategy. The CEM-PS2 employs the idea of area-restricted search learned from predatory search strategy, but the algorithm structure is simpler. Both the CEM-PS1 and CEM-PS2 have been demonstrated more effective and efficient than the others. As for complex method which locates in hybrid algorithm, the optimization can be achieved at a convergence precision of 1×10-3, which is recommended to use.展开更多
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi...An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat.展开更多
Based on the trajectory design of a mission to Saturn, this paper discusses four different trajectories in various swingby cases. We assume a single impulse to be applied in each case when the spacecraft approaches a ...Based on the trajectory design of a mission to Saturn, this paper discusses four different trajectories in various swingby cases. We assume a single impulse to be applied in each case when the spacecraft approaches a celestial body. Some optimal trajectories ofEJS, EMS, EVEJS and EVVEJS flying sequences are obtained using five global optimization algorithms: DE, PSO, DP, the hybrid algorithm PSODE and another hybrid algorithm, DPDE. DE is proved to be supe- rior to other non-hybrid algorithms in the trajectory optimi- zation problem. The hybrid algorithm of PSO and DE can improve the optimization performance of DE, which is vali- dated by the mission to Saturn with given swingby sequences. Finally, the optimization results of four different swingby sequences are compared with those of the ACT of ESA.展开更多
A novel approximation algorithm was proposed for the problem of finding the minimum total cost of all routes in Capacity Vehicle Routing Problem (CVRP). CVRP can be partitioned into three parts: the selection of vehic...A novel approximation algorithm was proposed for the problem of finding the minimum total cost of all routes in Capacity Vehicle Routing Problem (CVRP). CVRP can be partitioned into three parts: the selection of vehicles among the available vehicles, the initial routing of the selected fleet and the routing optimization. Fuzzy C-means (FCM) can group the customers with close Euclidean distance into the same vehicle according to the principle of similar feature partition. Transiently chaotic neural network (TCNN) combines local search and global search, possessing high search efficiency. It will solve the routes to near optimality. A simple tabu search (TS) procedure can improve the routes to more optimality. The computations on benchmark problems and comparisons with other results in literatures show that the proposed algorithm is a viable and effective approach for CVRP.展开更多
The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it c...The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment.Therefore,an effective image processing approach is employed in this present study for the accurate detection of skin cancer.Initially,the dermoscopy images of skin lesions are retrieved and processed by eliminating the noises with the assistance of Gaborfilter.Then,the pre-processed dermoscopy image is segmented into multiple regions by implementing cascaded Fuzzy C-Means(FCM)algorithm,which involves in improving the reliability of cancer detection.The A Gabor Response Co-occurrence Matrix(GRCM)is used to extract melanoma parameters in an effi-cient manner.A hybrid Particle Swarm Optimization(PSO)-Whale Optimization is then utilized for efficiently optimizing the extracted features.Finally,the fea-tures are significantly classified with the assistance of Probabilistic Neural Net-work(PNN)classifier for classifying the stages of skin lesion in an optimal manner.The whole work is stimulated in MATLAB and the attained outcomes have proved that the introduced approach delivers optimal results with maximal accuracy of 97.83%.展开更多
The uncertainties associated with multi-area power systems comprising both thermal and distributed renewable generation(DRG)sources such as solar and wind necessitate the use of an efficient load frequency control(LFC...The uncertainties associated with multi-area power systems comprising both thermal and distributed renewable generation(DRG)sources such as solar and wind necessitate the use of an efficient load frequency control(LFC)technique.Therefore,a hybrid version of two metaheuristic algorithms(arithmetic optimization and African vulture’s optimization algorithm)is developed.It is called the‘arithmetic optimized African vulture’s optimization algorithm(AOAVOA)’.This algorithm is used to tune a novel type-2 fuzzy-based proportional–derivative branched with dual degree-of-freedom proportional–integral–derivative controller for the LFC of a three-area hybrid deregulated power system.Thermal,electric vehicle(EV),and DRG sources(including a solar panel and a wind turbine system)are con-nected in area-1.Area-2 involves thermal and gas-generating units(GUs),while thermal and geothermal units are linked in area-3.Practical restrictions such as thermo-boiler dynamics,thermal-governor dead-band,and genera-tion rate constraints are also considered.The proposed LFC method is compared to other controllers and optimizers to demonstrate its superiority in rejecting step and random load disturbances.By functioning as energy storage ele-ments,EVs and DRG units can enhance dynamic responses during peak demand.As a result,the effect of the afore-mentioned units on dynamic reactions is also investigated.To validate its effectiveness,the closed-loop system is subjected to robust stability analysis and is compared to various existing control schemes from the literature.It is determined that the suggested AOAVOA improves fitness by 40.20%over the arithmetic optimizer(AO),while fre-quency regulation is improved by 4.55%over an AO-tuned type-2 fuzzy-based branched controller.展开更多
Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization...Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.展开更多
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper prop...The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.展开更多
A hybrid optimization algorithm for the time-domain identification of multivariable,state space model for aero-engine was presented in this paper.The optimization procedure runs particle swarm optimization(PSO) and le...A hybrid optimization algorithm for the time-domain identification of multivariable,state space model for aero-engine was presented in this paper.The optimization procedure runs particle swarm optimization(PSO) and least squares optimization(LSO) "in series".PSO starts from an initial population and searches for the optimum solution by updating generations.However,it can sometimes run into a suboptimal solution.Then LSO can start from the suboptimal solution of PSO,and get an optimum solution by conjugate gradient algorithm.The algorithm is suitable for the high-order multivariable system which has many parameters to be estimated in wide ranges.Hybrid optimization algorithm is applied to estimate the parameters of a 4-input 4-output state variable model(SVM) for aero-engine.The simulation results demonstrate the effectiveness of the proposed algorithm.展开更多
Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interf...Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interference.To solve this issue,this study proposed self-tuning VMD(SVMD)for cavitation diagnostics in fluid machinery,with a special focus on low signal-to-noise ratio conditions.A two-stage progressive refinement of the coarsely located target penalty factor for SVMD was conducted to narrow down the search space for accelerated decomposition.A hybrid optimized sparrow search algorithm(HOSSA)was developed for optimalαfine-tuning in a refined space based on fault-type-guided objective functions.Based on the submodes obtained using exclusive penalty factors in each iteration,the cavitation-related characteristic frequencies(CCFs)were extracted for diagnostics.The power spectrum correlation coefficient between the SVMD reconstruction and original signals was employed as a stop criterion to determine whether to stop further decomposition.The proposed SVMD overcomes the blindness of setting the mode number K in advance and the drawback of sharing penalty factors for all submodes in fixed-parameter and parameter-optimized VMDs.Comparisons with other existing methods in simulation signal decomposition and in-lab experimental data demonstrated the advantages of the proposed method in accurately extracting CCFs with lower computational cost.SVMD especially enhances the denoising capability of the VMD-based method.展开更多
Feature Selection(FS)is considered as an important preprocessing step in data mining and is used to remove redundant or unrelated features from high-dimensional data.Most optimization algorithms for FS problems are no...Feature Selection(FS)is considered as an important preprocessing step in data mining and is used to remove redundant or unrelated features from high-dimensional data.Most optimization algorithms for FS problems are not balanced in search.A hybrid algorithm called nonlinear binary grasshopper whale optimization algorithm(NL-BGWOA)is proposed to solve the problem in this paper.In the proposed method,a new position updating strategy combining the position changes of whales and grasshoppers population is expressed,which optimizes the diversity of searching in the target domain.Ten distinct high-dimensional UCI datasets,the multi-modal Parkinson's speech datasets,and the COVID-19 symptom dataset are used to validate the proposed method.It has been demonstrated that the proposed NL-BGWOA performs well across most of high-dimensional datasets,which shows a high accuracy rate of up to 0.9895.Furthermore,the experimental results on the medical datasets also demonstrate the advantages of the proposed method in actual FS problem,including accuracy,size of feature subsets,and fitness with best values of 0.913,5.7,and 0.0873,respectively.The results reveal that the proposed NL-BGWOA has comprehensive superiority in solving the FS problem of high-dimensional data.展开更多
Time difference of arrival(TDOA)is the positioning technique with the most potential in cellular mobile telecommunication systems.The Taylor series expansion method has been widely used in solving nonlinear equations ...Time difference of arrival(TDOA)is the positioning technique with the most potential in cellular mobile telecommunication systems.The Taylor series expansion method has been widely used in solving nonlinear equations for its high accuracy and good robustness.However,the performance of the Taylor’s method depends highly on the initial estimation.Therefore,one new algorithm,hybrid optimizing algo-rithm(HOA)was proposed,which combines the Taylor series expansion method with the steepest decent method.The steepest decent method features fast convergence at the initial iteration and small computation complexity.HOA takes great advantage of both methods.Simulation results show that HOA achieves better performance on positioning accuracy and efficiency.展开更多
Location layout of aircraft assembly is an important factor affecting product quality.Most of the existing re-searches use the combination of finite element analysis and intelligent algorithm to optimize the location ...Location layout of aircraft assembly is an important factor affecting product quality.Most of the existing re-searches use the combination of finite element analysis and intelligent algorithm to optimize the location layout,which are limited by numerical simulation accuracy and the selection and improvement of intelligent algorithms.At present,the analysis and decision-making technology based on field data is gradually applied in aircraft manufacturing.Based on the perception data of intelligent assembly unit of aircraft parts,a regression model of multi-input and multioutput support vector machine with Gauss kernel function as radial basis function is established,and the hyperparameters of the model are optimized by hybrid particle swarm optimization genetic algorithm(PSO-GA).GA-MSVR,PSO-MSVR and PSOGA-MSVR model are constructed respectively,and their results show that PSOGA-MSVR model has the best performance.Finally,the design of the aircraft wing location layout is taken as an example to verify the effectiveness of the method.展开更多
This study presents a closed-loop magnetically driven laser steering manipulator positioning system for endoscopic microsurgery.A multimagnetic field strength sensor circuit is embedded in a 16−mm diameter analog lase...This study presents a closed-loop magnetically driven laser steering manipulator positioning system for endoscopic microsurgery.A multimagnetic field strength sensor circuit is embedded in a 16−mm diameter analog laser steering manipulator.The magnetic field distribution of a cylindrical permanent magnet in three-dimensional space is first modeled using an integral model to overcome the large error induced by the magnetic dipole model when the sensor and permanent magnet are close.The integral in the model is then decomposed using the Gauss–Legendre quadrature to improve the computational efficiency of the formulation.Moreover,five commonly used global search optimization methods are compared.Then,the algorithm with the fastest computational rate among these five algorithms,the tree-seed algorithm,is fused with the Levenberg–Marquardt algorithm,which performs well in local search,to obtain a hybrid optimization algorithm.Finally,it is demonstrated through static and dynamic experiments that the system based on the hybrid algorithm can obtain satisfactory computational errors while maintaining a high computational rate.展开更多
基金Supported by the National Basic Research Program of China ("973" Program)the National Natural Science Foundation of China (60872112, 10805012)+1 种基金the Natural Science Foundation of Zhejiang Province(Z207588)the College Science Research Project of Anhui Province (KJ2008B268)~~
文摘The intelligent optimization of a multi-objective evolutionary algorithm is combined with a gradient algorithm. The hybrid multi-objective gradient algorithm is framed by the real number. Test functions are used to analyze the efficiency of the algorithm. In the simulation case of the water phantom, the algorithm is applied to an inverse planning process of intensity modulated radiation treatment (IMRT). The objective functions of planning target volume (PTV) and normal tissue (NT) are based on the average dose distribution. The obtained intensity profile shows that the hybrid multi-objective gradient algorithm saves the computational time and has good accuracy, thus meeting the requirements of practical applications.
基金University Putra Malaysia under Putra Grant No.9531200。
文摘Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
文摘Heuristic optimization methods provide a robust and efficient approach to solving complex optimization problems.This paper presents a hybrid optimization technique combining two heuristic optimization methods,artificial immune system(AIS) and particle swarm optimization(PSO),together in searching for the global optima of nonlinear functions.The proposed algorithm,namely hybrid anti-prematuration optimization method,contains four significant operators,i.e.swarm operator,cloning operator,suppression operator,and receptor editing operator.The swarm operator is inspired by the particle swarm intelligence,and the clone operator,suppression operator,and receptor editing operator are gleaned by the artificial immune system.The simulation results of three representative nonlinear test functions demonstrate the superiority of the hybrid optimization algorithm over the conventional methods with regard to both the solution quality and convergence rate.It is also employed to cope with a real-world optimization problem.
基金supported by National Natural Science Foundation of China (Grant:41901296,62202147).
文摘Hyperparameters play a vital impact in the performance of most machine learning algorithms.It is a challenge for traditional methods to con-figure hyperparameters of the capsule network to obtain high-performance manually.Some swarm intelligence or evolutionary computation algorithms have been effectively employed to seek optimal hyperparameters as a com-binatorial optimization problem.However,these algorithms are prone to get trapped in the local optimal solution as random search strategies are adopted.The inspiration for the hybrid rice optimization(HRO)algorithm is from the breeding technology of three-line hybrid rice in China,which has the advantages of easy implementation,less parameters and fast convergence.In the paper,genetic search is combined with the hybrid rice optimization algorithm(GHRO)and employed to obtain the optimal hyperparameter of the capsule network automatically,that is,a probability search technique and a hybridization strategy belong with the primary HRO.Thirteen benchmark functions are used to evaluate the performance of GHRO.Furthermore,the MNIST,Chest X-Ray(pneumonia),and Chest X-Ray(COVID-19&pneumonia)datasets are also utilized to evaluate the capsule network learnt by GHRO.The experimental results show that GHRO is an effective method for optimizing the hyperparameters of the capsule network,which is able to boost the performance of the capsule network on image classification.
基金Project(10972238) supported by the National Natural Science Foundation of ChinaProject(2010ssxt237) supported by Graduate Student Innovation Foundation of Central South University, ChinaProject supported by Excellent Doctoral Thesis Support Program of Central South University, China
文摘In the view of the disadvantages of complex method (CM) and electromagnetism-like algorithm (EM), complex electromagnetism-like hybrid algorithm (CEM) was proposed by embedding complex method into electromagnetism-like algorithm as local optimization algorithm. CEM was adopted to search the minimum safety factor in slope stability analysis and the results show that CEM holds advantages over EM and CM. It combines the merits of two and is more stable and efficient. For further improvement, two CEM hybrid algorithms based on predatory search (PS) strategies were proposed, both of which consist of modified algorithms and the search area of which is dynamically adjusted by changing restriction. The CEM-PS1 adopts theoretical framework of original predatory search strategy. The CEM-PS2 employs the idea of area-restricted search learned from predatory search strategy, but the algorithm structure is simpler. Both the CEM-PS1 and CEM-PS2 have been demonstrated more effective and efficient than the others. As for complex method which locates in hybrid algorithm, the optimization can be achieved at a convergence precision of 1×10-3, which is recommended to use.
基金supported by the National Aviation Science Foundation of China(20090196002)
文摘An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat.
基金supported by the National Natural Science Foundation of China (10832004 and 10672084).
文摘Based on the trajectory design of a mission to Saturn, this paper discusses four different trajectories in various swingby cases. We assume a single impulse to be applied in each case when the spacecraft approaches a celestial body. Some optimal trajectories ofEJS, EMS, EVEJS and EVVEJS flying sequences are obtained using five global optimization algorithms: DE, PSO, DP, the hybrid algorithm PSODE and another hybrid algorithm, DPDE. DE is proved to be supe- rior to other non-hybrid algorithms in the trajectory optimi- zation problem. The hybrid algorithm of PSO and DE can improve the optimization performance of DE, which is vali- dated by the mission to Saturn with given swingby sequences. Finally, the optimization results of four different swingby sequences are compared with those of the ACT of ESA.
文摘A novel approximation algorithm was proposed for the problem of finding the minimum total cost of all routes in Capacity Vehicle Routing Problem (CVRP). CVRP can be partitioned into three parts: the selection of vehicles among the available vehicles, the initial routing of the selected fleet and the routing optimization. Fuzzy C-means (FCM) can group the customers with close Euclidean distance into the same vehicle according to the principle of similar feature partition. Transiently chaotic neural network (TCNN) combines local search and global search, possessing high search efficiency. It will solve the routes to near optimality. A simple tabu search (TS) procedure can improve the routes to more optimality. The computations on benchmark problems and comparisons with other results in literatures show that the proposed algorithm is a viable and effective approach for CVRP.
文摘The necessity of on-time cancer detection is extremely high in the recent days as it becomes a threat to human life.The skin cancer is considered as one of the dangerous diseases among other types of cancer since it causes severe health impacts on human beings and hence it is highly mandatory to detect the skin cancer in the early stage for providing adequate treatment.Therefore,an effective image processing approach is employed in this present study for the accurate detection of skin cancer.Initially,the dermoscopy images of skin lesions are retrieved and processed by eliminating the noises with the assistance of Gaborfilter.Then,the pre-processed dermoscopy image is segmented into multiple regions by implementing cascaded Fuzzy C-Means(FCM)algorithm,which involves in improving the reliability of cancer detection.The A Gabor Response Co-occurrence Matrix(GRCM)is used to extract melanoma parameters in an effi-cient manner.A hybrid Particle Swarm Optimization(PSO)-Whale Optimization is then utilized for efficiently optimizing the extracted features.Finally,the fea-tures are significantly classified with the assistance of Probabilistic Neural Net-work(PNN)classifier for classifying the stages of skin lesion in an optimal manner.The whole work is stimulated in MATLAB and the attained outcomes have proved that the introduced approach delivers optimal results with maximal accuracy of 97.83%.
文摘The uncertainties associated with multi-area power systems comprising both thermal and distributed renewable generation(DRG)sources such as solar and wind necessitate the use of an efficient load frequency control(LFC)technique.Therefore,a hybrid version of two metaheuristic algorithms(arithmetic optimization and African vulture’s optimization algorithm)is developed.It is called the‘arithmetic optimized African vulture’s optimization algorithm(AOAVOA)’.This algorithm is used to tune a novel type-2 fuzzy-based proportional–derivative branched with dual degree-of-freedom proportional–integral–derivative controller for the LFC of a three-area hybrid deregulated power system.Thermal,electric vehicle(EV),and DRG sources(including a solar panel and a wind turbine system)are con-nected in area-1.Area-2 involves thermal and gas-generating units(GUs),while thermal and geothermal units are linked in area-3.Practical restrictions such as thermo-boiler dynamics,thermal-governor dead-band,and genera-tion rate constraints are also considered.The proposed LFC method is compared to other controllers and optimizers to demonstrate its superiority in rejecting step and random load disturbances.By functioning as energy storage ele-ments,EVs and DRG units can enhance dynamic responses during peak demand.As a result,the effect of the afore-mentioned units on dynamic reactions is also investigated.To validate its effectiveness,the closed-loop system is subjected to robust stability analysis and is compared to various existing control schemes from the literature.It is determined that the suggested AOAVOA improves fitness by 40.20%over the arithmetic optimizer(AO),while fre-quency regulation is improved by 4.55%over an AO-tuned type-2 fuzzy-based branched controller.
基金appreciation to King Saud University for funding this research through the Researchers Supporting Program number(RSPD2024R918),King Saud University,Riyadh,Saudi Arabia.
文摘Wireless Sensor Network(WSNs)consists of a group of nodes that analyze the information from surrounding regions.The sensor nodes are responsible for accumulating and exchanging information.Generally,node local-ization is the process of identifying the target node’s location.In this research work,a Received Signal Strength Indicator(RSSI)-based optimal node localization approach is proposed to solve the complexities in the conventional node localization models.Initially,the RSSI value is identified using the Deep Neural Network(DNN).The RSSI is conceded as the range-based method and it does not require special hardware for the node localization process,also it consumes a very minimal amount of cost for localizing the nodes in 3D WSN.The position of the anchor nodes is fixed for detecting the location of the target.Further,the optimal position of the target node is identified using Hybrid T cell Immune with Lotus Effect Optimization algorithm(HTCI-LEO).During the node localization process,the average localization error is minimized,which is the objective of the optimal node localization.In the regular and irregular surfaces,this hybrid algorithm effectively performs the localization process.The suggested hybrid algorithm converges very fast in the three-dimensional(3D)environment.The accuracy of the proposed node localization process is 94.25%.
文摘The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms.
文摘A hybrid optimization algorithm for the time-domain identification of multivariable,state space model for aero-engine was presented in this paper.The optimization procedure runs particle swarm optimization(PSO) and least squares optimization(LSO) "in series".PSO starts from an initial population and searches for the optimum solution by updating generations.However,it can sometimes run into a suboptimal solution.Then LSO can start from the suboptimal solution of PSO,and get an optimum solution by conjugate gradient algorithm.The algorithm is suitable for the high-order multivariable system which has many parameters to be estimated in wide ranges.Hybrid optimization algorithm is applied to estimate the parameters of a 4-input 4-output state variable model(SVM) for aero-engine.The simulation results demonstrate the effectiveness of the proposed algorithm.
基金Supported by National Natural Science Foundation of China(Grant No.52075481)Zhejiang Provincial Natural Science Foundation of China(Grant No.LD21E050003)Central Government Fund for Regional Science and Technology Development of China(Grant No.2023ZY1033).
文摘Variational mode decomposition(VMD)is a suitable tool for processing cavitation-induced vibration signals and is greatly affected by two parameters:the decomposed number K and penalty factorαunder strong noise interference.To solve this issue,this study proposed self-tuning VMD(SVMD)for cavitation diagnostics in fluid machinery,with a special focus on low signal-to-noise ratio conditions.A two-stage progressive refinement of the coarsely located target penalty factor for SVMD was conducted to narrow down the search space for accelerated decomposition.A hybrid optimized sparrow search algorithm(HOSSA)was developed for optimalαfine-tuning in a refined space based on fault-type-guided objective functions.Based on the submodes obtained using exclusive penalty factors in each iteration,the cavitation-related characteristic frequencies(CCFs)were extracted for diagnostics.The power spectrum correlation coefficient between the SVMD reconstruction and original signals was employed as a stop criterion to determine whether to stop further decomposition.The proposed SVMD overcomes the blindness of setting the mode number K in advance and the drawback of sharing penalty factors for all submodes in fixed-parameter and parameter-optimized VMDs.Comparisons with other existing methods in simulation signal decomposition and in-lab experimental data demonstrated the advantages of the proposed method in accurately extracting CCFs with lower computational cost.SVMD especially enhances the denoising capability of the VMD-based method.
基金supported by Natural Science Foundation of Liaoning Province under Grant 2021-MS-272Educational Committee project of Liaoning Province under Grant LJKQZ2021088.
文摘Feature Selection(FS)is considered as an important preprocessing step in data mining and is used to remove redundant or unrelated features from high-dimensional data.Most optimization algorithms for FS problems are not balanced in search.A hybrid algorithm called nonlinear binary grasshopper whale optimization algorithm(NL-BGWOA)is proposed to solve the problem in this paper.In the proposed method,a new position updating strategy combining the position changes of whales and grasshoppers population is expressed,which optimizes the diversity of searching in the target domain.Ten distinct high-dimensional UCI datasets,the multi-modal Parkinson's speech datasets,and the COVID-19 symptom dataset are used to validate the proposed method.It has been demonstrated that the proposed NL-BGWOA performs well across most of high-dimensional datasets,which shows a high accuracy rate of up to 0.9895.Furthermore,the experimental results on the medical datasets also demonstrate the advantages of the proposed method in actual FS problem,including accuracy,size of feature subsets,and fitness with best values of 0.913,5.7,and 0.0873,respectively.The results reveal that the proposed NL-BGWOA has comprehensive superiority in solving the FS problem of high-dimensional data.
基金This work was supported by the Research on High-Speed Railway Intelligent Transportation Information System and Key Techniques(No.60332020).
文摘Time difference of arrival(TDOA)is the positioning technique with the most potential in cellular mobile telecommunication systems.The Taylor series expansion method has been widely used in solving nonlinear equations for its high accuracy and good robustness.However,the performance of the Taylor’s method depends highly on the initial estimation.Therefore,one new algorithm,hybrid optimizing algo-rithm(HOA)was proposed,which combines the Taylor series expansion method with the steepest decent method.The steepest decent method features fast convergence at the initial iteration and small computation complexity.HOA takes great advantage of both methods.Simulation results show that HOA achieves better performance on positioning accuracy and efficiency.
基金supported by the Equipment Pre-research Project of China (No. 41423010202)
文摘Location layout of aircraft assembly is an important factor affecting product quality.Most of the existing re-searches use the combination of finite element analysis and intelligent algorithm to optimize the location layout,which are limited by numerical simulation accuracy and the selection and improvement of intelligent algorithms.At present,the analysis and decision-making technology based on field data is gradually applied in aircraft manufacturing.Based on the perception data of intelligent assembly unit of aircraft parts,a regression model of multi-input and multioutput support vector machine with Gauss kernel function as radial basis function is established,and the hyperparameters of the model are optimized by hybrid particle swarm optimization genetic algorithm(PSO-GA).GA-MSVR,PSO-MSVR and PSOGA-MSVR model are constructed respectively,and their results show that PSOGA-MSVR model has the best performance.Finally,the design of the aircraft wing location layout is taken as an example to verify the effectiveness of the method.
基金supported by the Key Research and Development Projects in Guangxi,China(AB21076005)the Specialized Talents in Guangxi,China(AD18281018)+1 种基金the Innovation Project of GUET Graduate Education,China(2023YCXS129)the Innovation Project of GUET Graduate Education,China(2022YCXS153).
文摘This study presents a closed-loop magnetically driven laser steering manipulator positioning system for endoscopic microsurgery.A multimagnetic field strength sensor circuit is embedded in a 16−mm diameter analog laser steering manipulator.The magnetic field distribution of a cylindrical permanent magnet in three-dimensional space is first modeled using an integral model to overcome the large error induced by the magnetic dipole model when the sensor and permanent magnet are close.The integral in the model is then decomposed using the Gauss–Legendre quadrature to improve the computational efficiency of the formulation.Moreover,five commonly used global search optimization methods are compared.Then,the algorithm with the fastest computational rate among these five algorithms,the tree-seed algorithm,is fused with the Levenberg–Marquardt algorithm,which performs well in local search,to obtain a hybrid optimization algorithm.Finally,it is demonstrated through static and dynamic experiments that the system based on the hybrid algorithm can obtain satisfactory computational errors while maintaining a high computational rate.