期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
FRACTALS OF HYBRID ORBITALS AND THEIR APPLICATIONS IN THE ENZYME MODELS
1
作者 Hou Qiang LI Shu Hua CHEN Hua Ming ZHAO Department of Chemistry.Sichuan University.Chengdu 610064 《Chinese Chemical Letters》 SCIE CAS CSCD 1990年第3期257-260,共4页
An enzyme is a kind of protein with catalytic activity and long chain,and its structure and shape are determined by the hybridized state of atomic orbital.The fractal dimension(D_f)is closely related to the hybridizat... An enzyme is a kind of protein with catalytic activity and long chain,and its structure and shape are determined by the hybridized state of atomic orbital.The fractal dimension(D_f)is closely related to the hybridization,e.g.D_f=2ln2/ln[2(1+α/(1-α))]for the spa type, where a denotes the fraction of the s orbital in the hybridized molecular orbital.This relationship and the five fractal theorems introduced by the present paper play an important role in the investigations of the model of imitative enzyme. 展开更多
关键词 FRACTALS OF hybrid orbitals AND THEIR APPLICATIONS IN THE ENZYME MODELS NATURE
下载PDF
p-d Orbital Hybridization Engineered Single-Atom Catalyst for Electrocatalytic Ammonia Synthesis 被引量:1
2
作者 Jingkun Yu Xue Yong Siyu Lu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期119-125,共7页
The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,... The rational design of metal single-atom catalysts(SACs)for electrochemical nitrogen reduction reaction(NRR)is challenging.Two-dimensional metal-organic frameworks(2DMOFs)is a unique class of promising SACs.Up to now,the roles of individual metals,coordination atoms,and their synergy effect on the electroanalytic performance remain unclear.Therefore,in this work,a series of 2DMOFs with different metals and coordinating atoms are systematically investigated as electrocatalysts for ammonia synthesis using density functional theory calculations.For a specific metal,a proper metal-intermediate atoms p-d orbital hybridization interaction strength is found to be a key indicator for their NRR catalytic activities.The hybridization interaction strength can be quantitatively described with the p-/d-band center energy difference(Δd-p),which is found to be a sufficient descriptor for both the p-d hybridization strength and the NRR performance.The maximum free energy change(ΔG_(max))andΔd-p have a volcanic relationship with OsC_(4)(Se)_(4)located at the apex of the volcanic curve,showing the best NRR performance.The asymmetrical coordination environment could regulate the band structure subtly in terms of band overlap and positions.This work may shed new light on the application of orbital engineering in electrocatalytic NRR activity and especially promotes the rational design for SACs. 展开更多
关键词 first-principle calculations Nitrogen reduction p-d orbital hybridization single-atom catalysts
下载PDF
Manipulating d-d orbital hybridization induced by Mo-doped Co_(9)S_(8) nanorod arrays for high-efficiency water electrolysis
3
作者 Xue Zhou Jing Li +8 位作者 Guangyao Zhou Weiran Huang Yucan Zhang Jun Yang Huan Pang Mingyi Zhang Dongmei Sun Yawen Tang Lin Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期592-600,I0015,共10页
Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept ... Precisely refining the electronic structure of electrocatalysts represents a powerful approach to further optimize the electrocatalytic performance.Herein,we demonstrate an ingenious d-d orbital hybridization concept to construct Mo-doped Co_(9)S_(8) nanorod arrays aligned on carbon cloth(CC)substrate(abbreviated as Mo-Co_(9)S_(8)@CC hereafter)as a high-efficiency bifunctional electrocatalyst toward water electrolysis.It has experimentally and theoretically validated that the 4d-3d orbital coupling between Mo dopant and Co site can effectively optimize the H_(2)O activation energy and lower H^(*)adsorption energy barrier,thereby leading to enhanced hydrogen evolution reaction(HER)and oxygen evolution reaction(OER)activities.Thanks to the unique electronic and geometrical advantages,the optimized Mo-Co_(9)S_(8)@CC with appropriate Mo content exhibits outstanding bifunctional performance in alkaline solution,with the overpotentials of 75 and 234 mV for the delivery of a current density of 10 mA cm^(-2),small Tafel slopes of 53.8 and 39.9 mV dec~(-1)and long-term stabilities for at least 32 and 30 h for HER and OER,respectively.More impressively,a water splitting electrolylzer assembled by the self-supported Mo-Co_(9)S_(8)@CC electrode requires a low cell voltage of 1.53 V at 10 mA cm^(-2)and shows excellent stability and splendid reversibility,demonstrating a huge potential for affordable and scalable electrochemical H_(2) production.The innovational orbital hybridization strategy for electronic regulation herein provides an inspirable avenue for developing progressive electrocatalysts toward new energy systems. 展开更多
关键词 d-d orbital hybridization Transition metal sulfides Nanorods arrays Water electrolysis
下载PDF
Enhanced Redox Electrocatalysis in High‑Entropy Perovskite Fluorides by Tailoring d–p Hybridization
4
作者 Xudong Li Zhuomin Qiang +4 位作者 Guokang Han Shuyun Guan Yang Zhao Shuaifeng Lou Yongming Zhu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期333-350,共18页
High-entropy catalysts featuring exceptional properties are,in no doubt,playing an increasingly significant role in aprotic lithium-oxygen batteries.Despite extensive effort devoted to tracing the origin of their unpa... High-entropy catalysts featuring exceptional properties are,in no doubt,playing an increasingly significant role in aprotic lithium-oxygen batteries.Despite extensive effort devoted to tracing the origin of their unparalleled performance,the relationships between multiple active sites and reaction intermediates are still obscure.Here,enlightened by theoretical screening,we tailor a high-entropy perovskite fluoride(KCoMnNiMgZnF_(3)-HEC)with various active sites to overcome the limitations of conventional catalysts in redox process.The entropy effect modulates the d-band center and d orbital occupancy of active centers,which optimizes the d–p hybridization between catalytic sites and key intermediates,enabling a moderate adsorption of LiO_(2)and thus reinforcing the reaction kinetics.As a result,the Li–O2 battery with KCoMnNiMgZnF_(3)-HEC catalyst delivers a minimal discharge/charge polarization and long-term cycle stability,preceding majority of traditional catalysts reported.These encouraging results provide inspiring insights into the electron manipulation and d orbital structure optimization for advanced electrocatalyst. 展开更多
关键词 Lithium-oxygen batteries KCoMnNiMgZnF_(3)-HEC perovskite fluoride Entropy effect Catalytic kinetics d-p orbital hybridization
下载PDF
Asymmetric orbital hybridization in Zn-doped antiperovskite Cu_(1-x)Zn_(x)NMn_(3)enables highly efficient electrocatalytic hydrogen production
5
作者 Yuxiang Yan Yuxin Cao +9 位作者 Zhichao Wang Ka Wang Hengdong Ren Shaoqi Zhang Yi Wang Jian Chen Yong Zhou Lizhe Liu Jun Dai Xinglong Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期304-312,I0008,共10页
Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has gar... Rational design of efficient and robust earth-abundant alkaline hydrogen evolution reaction(HER)catalysts is a key factor for developing energy conversion technologies.Currently,antiperovskite nitride CuNMn_(3)has garnered significant interest due to its remarkable properties such as negative/zero thermal expansion and magnetocaloric effects.However,when utilized as hydrogen evolution catalysts,it encounters large challenge resulting from excessively strong/weak interactions with adsorbed H on Mn/Cu active sites,which leads to low HER activity.In this study,we introduce an asymmetric orbital hybridization strategy in Zn-doped Cu_(1-x)Zn_(x)NMn_(3)by leveraging the localization of Zn electronic states to reconfigure the electronic structures of Cu and Mn,thereby reducing the energy barrier for water dissociation and optimizing Cu and Mn active sites for hydrogen adsorption and H_(2)production.Electrochemical evaluations reveal that Cu_(0.85)Zn_(0.15)NMn_(3)with x=0.15 demonstrates exceptional electrocatalytic activity in alkaline electrolytes.A low overpotential of 52 mV at 10 mA cm^(-2)and outstanding stability over a 150-h test period are achieved,surpassing commercial Pt/C.This research offers a novel strategy for enhancing HER performance by modulating asymmetric hybridization of electron orbitals between multiple metal atoms within a material structure. 展开更多
关键词 Cu_(1-x)ZnxNMn_(3) Asymmetric orbital hybridization Hydrogen adsorption Hydrogen production
下载PDF
Intermediate sp-hybridization for chemical bonds in nonplanar covalent molecules of carbon 被引量:1
6
作者 曹则贤 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期145-149,共5页
General representations for symmetrical and asymmetrical intermediate sp-hybridization are provided, with which the development of electronic structure in C3v-symmetrical C2H6 and the bonding configuration in C60 have... General representations for symmetrical and asymmetrical intermediate sp-hybridization are provided, with which the development of electronic structure in C3v-symmetrical C2H6 and the bonding configuration in C60 have been analyzed as an example. The spherical structure of C60 does not necessarily require the fourth hybrid, h4, to lie along the radial direction. Rather, h4 runs at an angle of 3.83° from the radius, in the plane bisecting a pentagon, to achieve maximum overlap with adjacent h4-hybrids. By virtue of these representations, a number of properties of covalent molecules and solids can be conveniently calculated. This work might be particularly helpful for the study of C-C bonding in curved structures of carbon, such as fullerenes, carbon nanotubes, and buckled graphene. 展开更多
关键词 orbital hybridization representation buckled graphene C60
下载PDF
Accelerating Oxygen Electrocatalysis Kinetics on Metal-Organic Frameworks via Bond Length Optimization 被引量:2
7
作者 Fan He Yingnan Liu +10 位作者 Xiaoxuan Yang Yaqi Chen Cheng‑Chieh Yang Chung‑Li Dong Qinggang He Bin Yang Zhongjian Li Yongbo Kuang Lecheng Lei Liming Dai Yang Hou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期279-290,共12页
Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hamper... Metal-organic frameworks(MOFs)have been developed as an ideal platform for exploration of the relationship between intrinsic structure and catalytic activity,but the limited catalytic activity and stability has hampered their practical use in water splitting.Herein,we develop a bond length adjustment strategy for optimizing naphthalene-based MOFs that synthesized by acid etching Co-naphthalenedicarboxylic acid-based MOFs(donated as AE-CoNDA)to serve as efficient catalyst for water splitting.AE-CoNDA exhibits a low overpotential of 260 mV to reach 10 mA cm^(−2)and a small Tafel slope of 62 mV dec^(−1)with excellent stability over 100 h.After integrated AE-CoNDA onto BiVO_(4),photocurrent density of 4.3 mA cm^(−2)is achieved at 1.23 V.Experimental investigations demonstrate that the stretched Co-O bond length was found to optimize the orbitals hybridization of Co 3d and O 2p,which accounts for the fast kinetics and high activity.Theoretical calculations reveal that the stretched Co-O bond length strengthens the adsorption of oxygen-contained intermediates at the Co active sites for highly efficient water splitting. 展开更多
关键词 Metal-organic frameworks Bond length adjustment Spin state transition orbitals hybridization Water splitting
下载PDF
Oscillation of Dzyaloshinskii–Moriya interaction driven by weak electric fields
8
作者 陈润泽 曹安妮 +3 位作者 王馨苒 柳洋 杨洪新 赵巍胜 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期487-491,共5页
Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the in... Dzyaloshinskii–Moriya interaction(DMI) is under extensive investigation considering its crucial status in chiral magnetic orders, such as Néel-type domain wall(DW) and skyrmions. It has been reported that the interfacial DMI originating from Rashba spin–orbit coupling(SOC) can be linearly tuned with strong external electric fields. In this work, we experimentally demonstrate that the strength of DMI exhibits rapid fluctuations, ranging from 10% to 30% of its original value, as a function of applied electric fields in Pt/Co/MgO heterostructures within the small field regime(< 10-2V/nm). Brillouin light scattering(BLS) experiments have been performed to measure DMI, and first-principles calculations show agreement with this observation, which can be explained by the variation in orbital hybridization at the Co/MgO interface in response to the weak electric fields. Our results on voltage control of DMI(VCDMI) suggest that research related to the voltage control of magnetic anisotropy for spin–orbit torque or the motion control of skyrmions might also have to consider the role of the external electric field on DMI as small voltages are generally used for the magnetoresistance detection. 展开更多
关键词 Dzyaloshinskii-Moriya interaction weak electric field control effect Rashba spin-orbit coupling interfacial orbital hybridization
下载PDF
Retaining the self-released chalcogenate at reconstructed cobalt sites by self-transformed carbonate regulation for boosted oxygen evolution
9
作者 Jingxuan Zhao Zhe Xue +3 位作者 Qing Wang Xiangyang Li Shoujie Liu Xu Zhao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期46-54,I0002,共10页
The in-situ generated oxyanions at electrochemically reconstructed catalysts from metal-based nonoxide compounds have been proven to significantly accelerate oxygen evolution reaction(OER)kinetics.However,it remains a... The in-situ generated oxyanions at electrochemically reconstructed catalysts from metal-based nonoxide compounds have been proven to significantly accelerate oxygen evolution reaction(OER)kinetics.However,it remains a challenge to retain these self-released oxyanions at reconstructed catalysts,hindering its utilization as a tool to develop efficient OER catalysts.Here,we demonstrate a versatile selftransformed carbonate regulation strategy to efficiently retain the self-released chalcogenate at Co oxyhydroxides reconstructed from carbon-incorporated Co selenides under OER conditions.These selftransformed CO_(3)^(2-)can induce electron accumulation and narrow d bond at Co sites to facilitate the Co3d-O 2p orbital hybridization between Co sites and SeO_(x)^(2-)for enhanced SeO_(x)^(2-)retention,which can accelerate the rate-limiting step for^(*)OOH formation during OER.Relative to CoOOH-SeO_(x)^(2-)with limited SeO_(x)^(2-)residues,CoOOH-CO_(3)^(2-)/SeO_(x)^(2-)with elevated SeO_(x)^(2-)retention by CO_(3)^(2-)regulation exhibited a 5.6-fold increase in current density and a remarkable lower Tafel slope towards OER.This strategy paves a rational avenue to design efficient catalysts for electrooxidation reactions through finely regulating self-released oxyanions at reconstructed structures. 展开更多
关键词 Electrochemical reconstruction Chalcogenate retention Carbonate regulation Orbital hybridization Oxygen evolution reaction
下载PDF
Enhancing ^(*)CO coverage on Sm-Cu_(2)O via 4f-3d orbital hybridization for highly efficient electrochemical CO_(2) reduction to C_(2)H_(4)
10
作者 Xiaojun Wang Lanlan Shi +11 位作者 Weikun Ren Jingxian Li Yuanming Liu Weijie Fu Shiyu Wang Shuyun Yao Yingjie Ji Kang Ji Liwen Zhang Zhiyu Yang Jiangzhou Xie Yi-Ming Yan 《Journal of Energy Chemistry》 SCIE EI CAS 2024年第12期409-416,共8页
The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing... The electrocatalytic conversion of CO_(2) into valuable chemical feedstocks using renewable electricity offers a compelling strategy for closing the carbon loop.While copper-based materials are effective in catalyzing CO_(2) to C_(2+)products,the instability of Cu^(+)species,which tend to reduce to Cu~0 at cathodic potentials during CO_(2) reduction,poses a significant challenge.Here,we report the development of SmCu_(2)O and investigate the influence of f-d orbital hybridization on the CO_(2) reduction reaction (CO_(2)RR).Supported by density functional theory (DFT) calculations,our experimental results demonstrate that hybridization between Sm^(3+)4f and Cu^(+)3d orbitals not only improves the adsorption of *CO intermediates and increases CO coverage to stabilize Cu^(+) but also facilitates CO_(2) activation and lowers the energy barriers for CAC coupling.Notably,Sm-Cu_(2)O achieves a Faradaic efficiency for C_(2)H_(4) that is 38%higher than that of undoped Cu_(2)O.Additionally,it sustains its catalytic activity over an extended operational period exceeding 7 h,compared to merely 2 h for the undoped sample.This research highlights the potential of fd orbital hybridization in enhancing the efficacy of copper-based catalysts for CO_(2)RR,pointing towards a promising direction for the development of durable,high-performance electrocatalysts for sustainable chemical synthesis. 展开更多
关键词 Electrochemical CO_(2)reduction F-d orbital hybridization Adsorption of^(*)CO CO coverage C_(2+)products
下载PDF
Electronic structures of vacancies in Co_(3)Sn_(2)S_(2)
11
作者 Yuxiang Gao Xin Jin +2 位作者 Yixuan Gao Yu-Yang Zhang Shixuan Du 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第7期444-450,共7页
Co_(3)Sn_(2)S_(2)has attracted a lot of attention for its multiple novel physical properties,including topological nontrivial surface states,anomalous Hall effect,and anomalous Nernst effect.Vacancies,which play impor... Co_(3)Sn_(2)S_(2)has attracted a lot of attention for its multiple novel physical properties,including topological nontrivial surface states,anomalous Hall effect,and anomalous Nernst effect.Vacancies,which play important roles in functional materials,have attracted increasing research attention.In this paper,by using density functional theory calculations,we first obtain band structures and magnetic moments of Co_(3)Sn_(2)S_(2)with exchange–correlation functionals at different levels.It is found that the generalized gradient approximation gives the positions of Weyl points consistent with experiments in bulk Co_(3)Sn_(2)S_(2).We then investigate the electronic structures of defects on surfaces with S and Sn terminations which have been observed in experiments.The results show that the single sulfur vacancy on the S-terminated surface introduces localized bond states inside the bandgap near the Fermi level.For di-and tri-sulfur vacancies,the localized defect states hybridize with neighboring ones,forming bonding states as well as anti-bonding states.The Sn vacancy on the Sn-terminated surface also introduces localized bond states,which are merged with the valence bands.These results provide a reference for future experimental investigations of vacancies in Co_(3)Sn_(2)S_(2). 展开更多
关键词 first-principle calculations VACANCIES localized bound states orbital hybridization
下载PDF
Tensile Strain and Interatomic Orbital Hybridization Effects Boost the Electrocatalytic Performance of Intermetallic Pd3Pb Nanowires for Ethanol Electrooxidation
12
作者 Bo-Qiang Miao Zi-Han Yuan +5 位作者 Xi-Lai Liu Xuan Ai Guang-Tao Zhao Pei Chen Pu-Jun Jin Yu Chen 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第21期2633-2640,共8页
We present a strategy that effectively modulate the d-band electronic structure of the active center by strain effect and interatomic orbital hybridization.This strategy efficiently promotes the kinetic process of the... We present a strategy that effectively modulate the d-band electronic structure of the active center by strain effect and interatomic orbital hybridization.This strategy efficiently promotes the kinetic process of the ethanol oxidation reaction(EOR)in alkaline media.In the intermetallic Pd_(3)Pb nanowires,the introduction of Pb not only causes the lattice expansion of Pd but also achieves the interatomic orbital hybridization bonding with Pd.Such interatomic orbital hybridization effect and tensile strain effect can effectively achieve a co-regulation of the d-band electronic structure of Pd,which directly affects the adsorption behavior of intermediate on Pd for EOR.Hence,the intermetallic Pd_(3)Pb nanowires demonstrate enhanced EOR activity and anti-poisoning ability against CO_(ads).Theoretical calculations show that the enhanced OH^(*)adsorption ability and the low energy barrier for the oxidative dehydrogenation of ethanol are the keys to high EOR activity and stability of the intermetallic Pd_(3)Pb nanowires. 展开更多
关键词 Intermetallic structure Orbital hybridization d-band structure Ethanol oxidation Synergistic effect
原文传递
Deciphering orbital hybridization in heterogeneous catalysis
13
作者 Xiaoyang Yue Lei Cheng +2 位作者 Eszter Baráth Rajenahally V.Jagadeesh Quanjun Xiang 《Electron》 2024年第1期68-94,共27页
The catalytic coordinate is essentially the evolving frontier orbital interaction while feeding with catalytic materials and adsorbates under proper reaction conditions.The heterogeneous catalytic reaction mechanism i... The catalytic coordinate is essentially the evolving frontier orbital interaction while feeding with catalytic materials and adsorbates under proper reaction conditions.The heterogeneous catalytic reaction mechanism involves the initial adsorption and activation of reactants,subsequent intermediate transformation,final target product desorption,and regeneration of catalytic materials.In these catalytic processes,interaction modulations in terms of orbital hybridization/coupling allow an intrinsic control on both thermodynamics and kinetics.Concerned charge transfer and redistribution,orbital splitting and rearrangement with specific orientation,and spin change and crossover pose a formidable challenge on mechanism elucidation;it is hard to precisely correlate the apparent activity and selectivity,let alone rational modulations on it.Therefore,deciphering the orbital couplings inside a catalytic round is highly desirable and the dependent descriptor further provides in-depth insights into catalyst design at the molecule orbital level.This review hopes to provide a comprehensive understanding on orbital hybridizations,modulations,and correlated descriptors in heterogeneous catalysis. 展开更多
关键词 CATALYSIS catalyst design and prediction DESCRIPTORS INTERACTIONS orbital hybridization
原文传递
Hybridized valence electrons of 4f^(0-14)5d^(0-1)6s^2:the chemical bonding nature of rare earth elements 被引量:11
14
作者 薛冬峰 孙丛婷 陈小艳 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第9期837-843,共7页
The chemical bonding nature of rare earth(RE) elements can be studied by a quantitative analysis of electron domain of an atom. The outer electrons of RE elements are within the valence shell 4f^(0-14)5d^(0-1)6s... The chemical bonding nature of rare earth(RE) elements can be studied by a quantitative analysis of electron domain of an atom. The outer electrons of RE elements are within the valence shell 4f^(0-14)5d^(0-1)6s^2, which are involved in all chemical bonding features. We in this work found that the chemical bonding characteristics of 4f electrons are a kind of hybridizations, and classified them into three types of chemical bonding of 4f^(0-14)5d^(0-1)6s^2, furthermore, the coordination number ranging from 2 to 16 could thus be determined. We selected Y(NO_3)_3, La(NO_3)_3, Ce(NO_3)_3, YCl_3, LaCl_3, and CeCl_3 as examples to in-situ observe their IR spectra of chemical bonding behaviors of Y^(3+), La^(3+) and Ce^(3+) cations, which could show different chemical bonding modes of 4f and 5d electrons. In the present study, we obtained the direct criterion to confirm whether 4f electrons can participate in chemical bonding, that is, only when the coordination number of RE cations is larger than 9. 展开更多
关键词 rare earth orbital hybridization coordination number chemical bonding 4f electrons
原文传递
Modulating p-d orbital hybridization by CuO/Cu nanoparticles enables carbon nanofibers high cycling stability as anode for sodium storage 被引量:1
15
作者 Zhi-Jia Zhang He-Yi Sun +7 位作者 Yue-Fang Chen Yu-Wen Zhao Meng-Meng Zhang Chun-Sheng Li Yan Sun Zhong-Hui Gao Hui-Jun Li Yong Jiang 《Rare Metals》 SCIE EI CAS CSCD 2023年第12期4039-4047,共9页
Carbon nanofibers(CNFs)have been extensively studied as anode materials for sodium-ion batteries due to their high conductivity,large aspect ratio and good electrochemical stability.The low specific capacity and low f... Carbon nanofibers(CNFs)have been extensively studied as anode materials for sodium-ion batteries due to their high conductivity,large aspect ratio and good electrochemical stability.The low specific capacity and low first cycle efficiency of CNFs,however,have hindered its practical application.Herein,we present a facile strategy to synthesize a novel CNFs decorated with Cu/CuO nanoparticles(Cu-CNFs)using magnetron sputtering method.Cu/CuO nanoparticles were uniformly distributed on the surface of CNFs.According to the density functional theory(DFT)calculation,Cu/CuO nanoparticles d-orbitals and CNFs p-orbitals present hybridization states,and the Na~+adsorption energy of the modified CNFs decreases from-2.14 to-2.97 eV.The Cu-CNFs composites exhibit excellent sodium storage properties,presenting a desirable initial Coulombic efficiency of 76%and a high specific reversible capacity of 300 mAh·g^(-1)at 0.1 A·g^(-1)after 400 cycles.Cu-CNFs anode has excellent cycling stability under high current density,maintaining a high capacity of 150 mAh·g^(-1)at 1 A·g^(-1)after 6000 cycles.Using magnetron sputtering to regulate the electronic structure provides a new thought for improving the electrochemical performance of carbon materials. 展开更多
关键词 Carbon nanofibers Cu/CuO nanoparticles Orbital hybridization Magnetron sputtering Density functional theory calculation
原文传递
轨道杂化诱导吸附-催化效应在四电子水系锌碘电池的应用
16
作者 刘婷婷 雷成俊 +4 位作者 王徽健 徐琛 马文娇 贺鑫 梁宵 《Science Bulletin》 SCIE EI CAS CSCD 2024年第11期1674-1685,共12页
The successive I^(–)/I^(0)/I^(+)redox couples in the four-electron zinc-iodine aqueous battery(4eZIB)is plagued by the instability of the electrophilic I~+species,which could either be hydrolyzed or be neutralized by... The successive I^(–)/I^(0)/I^(+)redox couples in the four-electron zinc-iodine aqueous battery(4eZIB)is plagued by the instability of the electrophilic I~+species,which could either be hydrolyzed or be neutralized by the I_(3)~–redox intermediates.We present an adsorption-catalysis approach that effectively suppresses the hydrolysis of ICl species and also provides an enhanced reaction kinetics to surpass the formation of triiodide ions.We elucidate that the improved stability is attributed to the pronounced orbital hybridization between the d orbitals of Fe-N_4 moieties(atomic Fe supported on nitrogen doped carbon)and the p orbitals of iodine species(I_(2)and ICl).Such d-p orbital hybridization leads to enhanced adsorption for iodine species,increased energy barrier for proton detachment from the ICl.HOH intermediate during hydrolysis,and efficient catalysis of the iodine redox reactions with high conversion efficiency.The proposed 4eZIB demonstrates practical areal capacity(>3 mAh cm^(-2))with a near-unity coulombic efficiency,high energy density of 420 Wh kg^(-1)(based on cathode mass),and long-term stability(over 10,000 cycles).Even at–20℃,the battery exhibits stable performance for over 1000 cycles with high iodine utilization ratio. 展开更多
关键词 ICL TRIIODIDE Hydrolysis ELECTROCATALYSIS d-p orbital hybridization
原文传递
NIR-II Organic Photothermal Cocrystals with Strong Charge Transfer Interaction for Flexible Wearable Heaters
17
作者 Dong Zhang Shuyu Li +6 位作者 Shaosong Gao Siyao Fu Kexin Liu Dan He Huapeng Liu Xiaotao Zhang Wenping Hu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2024年第14期1563-1570,共8页
The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal proper... The organic cocrystal strategy has provided a convenient and efficient platform for preparing organic photothermal materials.However,the rapidly directional preparation of cocrystals with desirable photothermal properties remains challenging due to a lack of suitable design ideas.Here,two new photothermal cocrystals,MTC and MFC,based on acceptor molecules(TCNQ and F4TCNQ)with different electron-withdrawing capacities were quickly prepared by the coprecipitation method,aiming to explore the effect of charge transfer(CT)interaction on photothermal properties.Compared with MTC,the stronger intermolecular CT interaction in MFC facilitates extending the absorption range(from the NIR-I to the NIR-II region)and enhancing the non-radiative transition process.Under the 808 nm laser irradiation,the photothermal conversion efficiency(PCE)of MFC is 54.6%,whereas MTC displays a mere 36.8%.The MFC cocrystal was further combined with a flexible polymer substrate(HPDMS)to prepare a flexible wearable heater(HPDMS@MFC),which exhibits excellent NIR-II photothermal performance.This work points out a research direction for the rapid assembly of efficient photothermal cocrystals and additionally provides an extensive application prospect for organic photothermal cocrystals in the field of wearable devices. 展开更多
关键词 Organic photothermal cocrystals Charge transfer NiR-II region Density functional calculations Flexible wearable heaters Crystal engineering Orbital hybridization Fluorides
原文传递
Progress in oxygen behaviors in two-dimensional thin films 被引量:2
18
作者 Guang-Hua Yu Wen-Ling Peng Jing-Yan Zhang 《Rare Metals》 SCIE EI CAS CSCD 2017年第3期155-167,共13页
With the development of spintronics,the investigation on the behavior of oxygen in two-dimensional materials has never ceased.On account of its lively nature,oxygen is hard to exist alone in the system.However,it will... With the development of spintronics,the investigation on the behavior of oxygen in two-dimensional materials has never ceased.On account of its lively nature,oxygen is hard to exist alone in the system.However,it will interact with other atoms and produce complex orbital hybridization effect,which has influenced the performance of the material.Especially for materials in nanoscale,it is inevitable to introduce the oxygen atoms,no matter what in the process of preparation or employ.Therefore,it is necessary to carry on the research about the effect of oxygen behaviors in the two-dimensional thin films.In this paper,it will mainly introduce the effect of oxygen behaviors on the magnetic properties,electrical properties,phase transition,spin-dependent properties and thermal stability,summarize several factors which influence the oxygen behaviors,and generalize the research progress of the mechanism behind the oxygen behaviors. 展开更多
关键词 SPINTRONICS Two-dimensional thin films Orbital hybridization Oxygen behaviors
原文传递
Establishing a theoretical insight for penta-coordinated ironnitrogen-carbon catalysts toward oxygen reaction 被引量:1
19
作者 Ruihu Lu Chenxi Quan +4 位作者 Chengyi Zhang Qiu He Xiaobin Liao Zhaoyang Wang Yan Zhao 《Nano Research》 SCIE EI CSCD 2022年第7期6067-6075,共9页
Developing highly active iron-nitrogen-carbon catalysts for electrocatalytic oxygen reduction reactions(ORR)is pivotal to future energy technology.The penta-coordinated Fe-N-C with an augmented activity toward the oxy... Developing highly active iron-nitrogen-carbon catalysts for electrocatalytic oxygen reduction reactions(ORR)is pivotal to future energy technology.The penta-coordinated Fe-N-C with an augmented activity toward the oxygen reduction has been regarded as one of the promising candidates to replace platinum-based ORR catalysts.However,the lack of pertinent fundamental understanding hinders further optimizing the catalytic activity of such catalysts.Herein,through density functional theory(DFT)calculations,we systematically investigated the catalytic activity and ligand/metal coordination effects of 17 penta-coordinated FeN-C catalysts(labeled as FeNC-Xs,X denotes axial ligand).Our results not only show the theoretical overpotential of FeNC-Xs is lower than that of conventional tetra-coordinated Fe-N-C catalysts(labeled as FeNC),verifying the preeminent performance of FeNC-Xs,but also further indicate that the axial coordination effect of X ligands can decrease the orbital hybridization of Fe active center with ORR-relevant intermediates,sequentially accelerating the ORR.More importantly,we reveal that the catalytic activity of FeNC-Xs increases with a decreased electronegativity of X ligands,which can be utilized to describe the axial coordination effect for FeNC-Xs.These findings can deeply advance the understanding of penta-coordinated iron-nitrogencarbon catalysts,which provide timely guidelines for designing optimum Fe-N-C based catalysts. 展开更多
关键词 iron-nitrogen-carbon catalysts axial ligands first-principles calculations oxygen reduction reactions orbital hybridization
原文传递
New insight into pyrrolic-N site effect towards the first NIR window absorption of pyrrolic-N-rich carbon dots
20
作者 Fitri Aulia Permatasari Reza Umami +5 位作者 Citra Deliana Dewi Sundari Tirta Rona Mayangsari Atthar Luqman Ivansyah Fahdzi Muttaqien Takashi Ogi Ferry Iskandar 《Nano Research》 SCIE EI CSCD 2023年第4期6001-6009,共9页
Controlled C-N configurations,i.e.,pyrrolic-N,pyridinic-N,and graphitic-N,are promising strategies to tailor the carbon dots’(CDs)optical properties into the first near infrared(NIR)window(650-900 nm),a responsive ra... Controlled C-N configurations,i.e.,pyrrolic-N,pyridinic-N,and graphitic-N,are promising strategies to tailor the carbon dots’(CDs)optical properties into the first near infrared(NIR)window(650-900 nm),a responsive range for biomedical application.However,a deep understanding of the role of the C-N configuration in the CDs’properties is still challenging and thoughtprovoking owing to their complex structure.Here,an underlying pyrrolic-N concentration and position effect on the pyrrolic-N-rich CDs’absorption was comprehensively elucidated based on the integrated experimental and computational studies.The assynthesized pyrrolic-N-rich CDs exhibit a first NIR window absorption centered at 650 nm with high photothermal conversion.Pyrrolic-N concentrations from 1.4%to 11.3%and positions(edge and mid-site)were systematically investigated.A mid-site pyrrolic-N was subsequently generated after the pyrrolic-N concentration more than 10%.Edge-site pyrrolic-N induces a frontier orbital hybridization,reducing bandgap energy,while mid-site pyrrolic-N plays a critical role in inducing a first NIR window absorption owing to their high charge transfer.Also,pyrrolic-N-rich CDs inherit a bowl-like topological feature,elevating the CDs’layer thickness as much as 0.71 nm.This study shed light on the design and optimization of pyrrolic-N on CDs for the first NIR window responsive materials in any biomedical application. 展开更多
关键词 ABSORPTION carbon dots charge transfer first near infrared(NIR)window frontier orbital hybridization mid-site pyrrolic-N
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部