期刊文献+
共找到963篇文章
< 1 2 49 >
每页显示 20 50 100
Development of hybrid optimization algorithm for structures furnished with seismic damper devices using the particle swarm optimization method and gravitational search algorithm 被引量:1
1
作者 Najad Ayyash Farzad Hejazi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2022年第2期455-474,共20页
Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and ther... Previous studies about optimizing earthquake structural energy dissipation systems indicated that most existing techniques employ merely one or a few parameters as design variables in the optimization process,and thereby are only applicable only to simple,single,or multiple degree-of-freedom structures.The current approaches to optimization procedures take a specific damper with its properties and observe the effect of applying time history data to the building;however,there are many different dampers and isolators that can be used.Furthermore,there is a lack of studies regarding the optimum location for various viscous and wall dampers.The main aim of this study is hybridization of the particle swarm optimization(PSO) and gravitational search algorithm(GSA) to optimize the performance of earthquake energy dissipation systems(i.e.,damper devices) simultaneously with optimizing the characteristics of the structure.Four types of structural dampers device are considered in this study:(ⅰ) variable stiffness bracing(VSB) system,(ⅱ) rubber wall damper(RWD),(ⅲ) nonlinear conical spring bracing(NCSB) device,(iv) and multi-action stiffener(MAS) device.Since many parameters may affect the design of seismic resistant structures,this study proposes a hybrid of PSO and GSA to develop a hybrid,multi-objective optimization method to resolve the aforementioned problems.The characteristics of the above-mentioned damper devices as well as the section size for structural beams and columns are considered as variables for development of the PSO-GSA optimization algorithm to minimize structural seismic response in terms of nodal displacement(in three directions) as well as plastic hinge formation in structural members simultaneously with the weight of the structure.After that,the optimization algorithm is implemented to identify the best position of the damper device in the structural frame to have the maximum effect and minimize the seismic structure response.To examine the performance of the proposed PSO-GSA optimization method,it has been applied to a three-story reinforced structure equipped with a seismic damper device.The results revealed that the method successfully optimized the earthquake energy dissipation systems and reduced the effects of earthquakes on structures,which significantly increase the building’s stability and safety during seismic excitation.The analysis results showed a reduction in the seismic response of the structure regarding the formation of plastic hinges in structural members as well as the displacement of each story to approximately 99.63%,60.5%,79.13% and 57.42% for the VSB device,RWD,NCSB device,and MAS device,respectively.This shows that using the PSO-GSA optimization algorithm and optimized damper devices in the structure resulted in no structural damage due to earthquake vibration. 展开更多
关键词 hybrid optimization algorithm STRUCTURES EARTHQUAKE seismic damper devices particle swarm optimization method gravitational search algorithm
下载PDF
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
2
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimization(PSO) chaos theory cloud model hybrid optimization
下载PDF
Robot stereo vision calibration method with genetic algorithm and particle swarm optimization 被引量:1
3
作者 汪首坤 李德龙 +1 位作者 郭俊杰 王军政 《Journal of Beijing Institute of Technology》 EI CAS 2013年第2期213-221,共9页
Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a ... Accurate stereo vision calibration is a preliminary step towards high-precision visual posi- tioning of robot. Combining with the characteristics of genetic algorithm (GA) and particle swarm optimization (PSO), a three-stage calibration method based on hybrid intelligent optimization is pro- posed for nonlinear camera models in this paper. The motivation is to improve the accuracy of the calibration process. In this approach, the stereo vision calibration is considered as an optimization problem that can be solved by the GA and PSO. The initial linear values can be obtained in the frost stage. Then in the second stage, two cameras' parameters are optimized separately. Finally, the in- tegrated optimized calibration of two models is obtained in the third stage. Direct linear transforma- tion (DLT), GA and PSO are individually used in three stages. It is shown that the results of every stage can correctly find near-optimal solution and it can be used to initialize the next stage. Simula- tion analysis and actual experimental results indicate that this calibration method works more accu- rate and robust in noisy environment compared with traditional calibration methods. The proposed method can fulfill the requirements of robot sophisticated visual operation. 展开更多
关键词 robot stereo vision camera calibration genetic algorithm (GA) particle swarm opti-mization (PSO) hybrid intelligent optimization
下载PDF
Optimizing wind farm layout for enhanced electricity extraction using a new hybrid PSO-ANN method
4
作者 Mariam El Jaadi Touria Haidi +2 位作者 Abdelaziz Belfqih Mounia Farah Atar Dialmy 《Global Energy Interconnection》 EI CSCD 2024年第3期254-269,共16页
With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy e... With the growing need for renewable energy,wind farms are playing an important role in generating clean power from wind resources.The best wind turbine architecture in a wind farm has a major influence on the energy extraction efficiency.This paper describes a unique strategy for optimizing wind turbine locations on a wind farm that combines the capabilities of particle swarm optimization(PSO)and artificial neural networks(ANNs).The PSO method was used to explore the solution space and develop preliminary turbine layouts,and the ANN model was used to fine-tune the placements based on the predicted energy generation.The proposed hybrid technique seeks to increase energy output while considering site-specific wind patterns and topographical limits.The efficacy and superiority of the hybrid PSO-ANN methodology are proved through comprehensive simulations and comparisons with existing approaches,giving exciting prospects for developing more efficient and sustainable wind farms.The integration of ANNs and PSO in our methodology is of paramount importance because it leverages the complementary strengths of both techniques.Furthermore,this novel methodology harnesses historical data through ANNs to identify optimal turbine positions that align with the wind speed and direction and enhance energy extraction efficiency.A notable increase in power generation is observed across various scenarios.The percentage increase in the power generation ranged from approximately 7.7%to 11.1%.Owing to its versatility and adaptability to site-specific conditions,the hybrid model offers promising prospects for advancing the field of wind farm layout optimization and contributing to a greener and more sustainable energy future. 展开更多
关键词 Layout optimization Turbine placement Wind energy hybrid optimization particle swarm optimization Artificial neural networks Renewable energy Energy efficiency
下载PDF
A Hybrid Particle Swarm Optimization to Forecast Implied Volatility Risk
5
作者 Kais Tissaoui Sahbi Boubaker +2 位作者 Waleed Saud Alghassab Taha Zaghdoudi Jamel Azibi 《Computers, Materials & Continua》 SCIE EI 2022年第11期4291-4309,共19页
The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a... The application of optimization methods to prediction issues is a continually exploring field.In line with this,this paper investigates the connectedness between the infected cases of COVID-19 and US fear index from a forecasting perspective.The complex characteristics of implied volatility risk index such as non-linearity structure,time-varying and nonstationarity motivate us to apply a nonlinear polynomial Hammerstein model with known structure and unknown parameters.We use the Hybrid Particle Swarm Optimization(HPSO)tool to identify the model parameters of nonlinear polynomial Hammerstein model.Findings indicate that,following a nonlinear polynomial behaviour cascaded to an autoregressive with exogenous input(ARX)behaviour,the fear index in US financial market is significantly affected by COVID-19-infected cases in the US,COVID-19-infected cases in the world and COVID-19-infected cases in China,respectively.Statistical performance indicators provided by the developed models show that COVID-19-infected cases in the US are particularly powerful in predicting the Cboe volatility index compared to COVID-19-infected cases in the world and China(MAPE(2.1013%);R2(91.78%)and RMSE(0.6363 percentage points)).The proposed approaches have also shown good convergence characteristics and accurate fits of the data. 展开更多
关键词 Forecasting Cboe’s volatility index COVID-19 pandemic nonlinear polynomial hammerstein model hybrid particle swarm optimization
下载PDF
Optimization of Thermal Aware VLSI Non-Slicing Floorplanning Using Hybrid Particle Swarm Optimization Algorithm-Harmony Search Algorithm
6
作者 Sivaranjani Paramasivam Senthilkumar Athappan +1 位作者 Eswari Devi Natrajan Maheswaran Shanmugam 《Circuits and Systems》 2016年第5期562-573,共12页
Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimat... Floorplanning is a prominent area in the Very Large-Scale Integrated (VLSI) circuit design automation, because it influences the performance, size, yield and reliability of the VLSI chips. It is the process of estimating the positions and shapes of the modules. A high packing density, small feature size and high clock frequency make the Integrated Circuit (IC) to dissipate large amount of heat. So, in this paper, a methodology is presented to distribute the temperature of the module on the layout while simultaneously optimizing the total area and wirelength by using a hybrid Particle Swarm Optimization-Harmony Search (HPSOHS) algorithm. This hybrid algorithm employs diversification technique (PSO) to obtain global optima and intensification strategy (HS) to achieve the best solution at the local level and Modified Corner List algorithm (MCL) for floorplan representation. A thermal modelling tool called hotspot tool is integrated with the proposed algorithm to obtain the temperature at the block level. The proposed algorithm is illustrated using Microelectronics Centre of North Carolina (MCNC) benchmark circuits. The results obtained are compared with the solutions derived from other stochastic algorithms and the proposed algorithm provides better solution. 展开更多
关键词 VLSI Non-Slicing Floorplan Modified Corner List (MCL) Algorithm hybrid particle swarm Optimization-Harmony Search Algorithm (HPSOHS)
下载PDF
GA and PSO culled hybrid technique for economic dispatch problem with prohibited operating zones 被引量:4
7
作者 SUDHAKARAN M. AJAY-D-VIMALRAJ P. PALANIVELU T.G. 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第6期896-903,共8页
This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear c... This paper presents an efficient and reliable genetic algorithm (GA) based particle swarm optimization (PSO) tech- nique (hybrid GAPSO) for solving the economic dispatch (ED) problem in power systems. The non-linear characteristics of the generators, such as prohibited operating zones, ramp rate limits and non-smooth cost functions of the practical generator operation are considered. The proposed hybrid algorithm is demonstrated for three different systems and the performance is compared with the GA and PSO in terms of solution quality and computation efficiency. Comparison of results proved that the proposed algo- rithm can obtain higher quality solutions efficiently in ED problems. A comprehensive software package is developed using MATLAB. 展开更多
关键词 Economic dispatch (ED) Genetic algorithm (GA) particle swarm optimization (PSO) hybrid GAPSO Prohibited operating zone CROSSOVER MUTATION Velocity
下载PDF
Traveling Salesman Problem Using an Enhanced Hybrid Swarm Optimization Algorithm 被引量:2
8
作者 郑建国 伍大清 周亮 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期362-367,共6页
The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was ... The traveling salesman problem( TSP) is a well-known combinatorial optimization problem as well as an NP-complete problem. A dynamic multi-swarm particle swarm optimization and ant colony optimization( DMPSO-ACO) was presented for TSP.The DMPSO-ACO combined the exploration capabilities of the dynamic multi-swarm particle swarm optimizer( DMPSO) and the stochastic exploitation of the ant colony optimization( ACO) for solving the traveling salesman problem. In the proposed hybrid algorithm,firstly,the dynamic swarms,rapidity of the PSO was used to obtain a series of sub-optimal solutions through certain iterative times for adjusting the initial allocation of pheromone in ACO. Secondly,the positive feedback and high accuracy of the ACO were employed to solving whole problem. Finally,to verify the effectiveness and efficiency of the proposed hybrid algorithm,various scale benchmark problems were tested to demonstrate the potential of the proposed DMPSO-ACO algorithm. The results show that DMPSO-ACO is better in the search precision,convergence property and has strong ability to escape from the local sub-optima when compared with several other peer algorithms. 展开更多
关键词 particle swarm optimization(PSO) ant COLONY optimization(ACO) swarm intelligence TRAVELING SALESMAN problem(TSP) hybrid algorithm
下载PDF
Mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device
9
作者 Xin Xu Na Xu +3 位作者 Wei Zhang Junwen Wang Yao Li Chen Yang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第12期37-48,共12页
Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow... Mass transfer performance of gas–liquid two-phase flow at microscale is the basis of application of microreactor in gas–liquid reaction systems.At present,few researches on the mass transfer property of annular flow have been reported.Therefore,the mass transfer mechanism and relationship of gas–liquid annular flow in a microfluidic cross-junction device are studied in the present study.We find that the main factors,i.e.,flow pattern,liquid film thickness,liquid hydraulic retention time,phase interface fluctuation,and gas flow vorticity,which influence the flow mass transfer property,are directly affected both by gas and liquid flow velocities.But the influences of gas and liquid velocities on different mass transfer influencing factors are different.Thereout,the fitting relationships between gas and liquid flow velocities and mass transfer influencing factors are established.By comparing the results from calculations using fitting equations and simulations,it shows that the fitting equations have relatively high degrees of accuracy.Finally,the Pareto front,namely the Pareto optimal solution set,of gas and liquid velocity conditions for the best flow mass transfer property is obtained using the method of multi-objective particle swarm optimization.It is proved that the mass transfer property of the gas–liquid two-phase flow can be obviously enhanced under the guidance of the obtained Pareto optimal solution set through experimental verification. 展开更多
关键词 Gas-liquid microreactor Annular flow mass transfer mechanism mass transfer relationship Multi-objective particle swarm optimization
下载PDF
Hybrid Recommender System Using Systolic Tree for Pattern Mining
10
作者 S.Rajalakshmi K.R.Santha 《Computer Systems Science & Engineering》 SCIE EI 2023年第2期1251-1262,共12页
A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking in... A recommender system is an approach performed by e-commerce for increasing smooth users’experience.Sequential pattern mining is a technique of data mining used to identify the co-occurrence relationships by taking into account the order of transactions.This work will present the implementation of sequence pattern mining for recommender systems within the domain of e-com-merce.This work will execute the Systolic tree algorithm for mining the frequent patterns to yield feasible rules for the recommender system.The feature selec-tion's objective is to pick a feature subset having the least feature similarity as well as highest relevancy with the target class.This will mitigate the feature vector's dimensionality by eliminating redundant,irrelevant,or noisy data.This work pre-sents a new hybrid recommender system based on optimized feature selection and systolic tree.The features were extracted using Term Frequency-Inverse Docu-ment Frequency(TF-IDF),feature selection with the utilization of River Forma-tion Dynamics(RFD),and the Particle Swarm Optimization(PSO)algorithm.The systolic tree is used for pattern mining,and based on this,the recommendations are given.The proposed methods were evaluated using the MovieLens dataset,and the experimental outcomes confirmed the efficiency of the techniques.It was observed that the RFD feature selection with systolic tree frequent pattern mining with collaborativefiltering,the precision of 0.89 was achieved. 展开更多
关键词 Recommender systems hybrid recommender systems frequent pattern mining collaborativefiltering systolic tree river formation dynamics particle swarm optimization
下载PDF
改进灰狼算法优化GBDT在PM_(2.5)预测中的应用 被引量:2
11
作者 江雨燕 傅杰 +2 位作者 甘如美江 孙雨辰 王付宇 《安全与环境学报》 CAS CSCD 北大核心 2024年第4期1569-1580,共12页
针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局... 针对灰狼算法易陷入局部最优解和全局搜索能力不足的问题,通过霍尔顿序列(Halton Sequence)搜索算法初始化狼群位置,避免灰狼算法陷入局部最优解和重复运算;引入莱维飞行和随机游动策略对灰狼算法的寻优过程进行优化,以增加算法的全局搜索能力;利用粒子群算法模拟灰狼种群得出的最佳适应度以用于惩罚项改进灰狼算法中的头狼更新策略。使用改进算法优化的梯度提升树(Gradient Boosting Decision Trees,GBDT)模型对北京市大气污染物监测数据中PM_(2.5)质量浓度进行预测,采用3种评估函数对各模型以及混合模型预测效果得分进行评估。结果显示,本文改进的灰狼算法对梯度提升树的优化效果优于其他算法,均方根误差E RMS为6.65μg/m^(3),平均绝对值误差E MA为3.20μg/m^(3),拟合优度(R^(2))为99%,比传统灰狼算法优化结果的均方根误差减少了19.19μg/m^(3),平均绝对值误差降低了10.03μg/m^(3),拟合优度增加了9百分点;与霍尔顿序列和莱维飞行改进的(Levy Flight-Halton Sequence,LHGWO)相比,改进的灰狼算法预测得分的均方根误差降低了10.39μg/m^(3),平均绝对值误差减小了6.71μg/m^(3),拟合优度提高了5百分点。研究表明了预测模型优化的有效性,为未来城市改善空气质量提供了科学依据和技术支持。 展开更多
关键词 环境学 PM_(2.5)质量浓度预测 改进灰狼算法(GWO) 梯度提升树算法(GBDT) 莱维(Levy)飞行 霍尔顿序列(Halton Sequence) 粒子群算法(PSO)
下载PDF
基于PSO与AFSA的GNSS整周模糊度种群融合优化算法
12
作者 郭迎庆 詹洋 +3 位作者 张琰 王译那 徐赵东 李今保 《工程科学学报》 EI CSCD 北大核心 2024年第12期2246-2256,共11页
载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人... 载波相位测量是实现全球导航卫星系统(Global navigation satellite system, GNSS)快速高精度定位的重要途径,而准确解算整周模糊度是其中的关键步骤之一.粒子群算法(Particle swarm optimization, PSO)收敛速度快但易陷入局部最优,人工鱼群算法(Artificial fish swarm algorithm, AFSA)全局优化性能好但收敛速度慢,因此融合两种算法的优点,提出一种GNSS整周模糊度种群融合优化算法(PSOAF).首先,通过载波相位双差方程求解整周模糊度的浮点解和对应的协方差矩阵.然后,采用反整数Cholesky算法对模糊度浮点解作降相关处理.其次,针对整数最小二乘估计的不足通过优化适应度函数来提高算法的收敛性和搜索性能.最后,通过PSOAF算法对整周模糊度进行解算.通过经典算例和试验研究表明:PSOAF算法可以更快地收敛于最优解,搜索效率也更为出色,解算的基线精度可以控制在10 mm以内,在短基线的实际情况下具有较高的应用价值. 展开更多
关键词 全球导航卫星系统(GNSS) 整周模糊度 粒子群算法 人工鱼群算法 融合算法
下载PDF
具有紧时、高能耗特征的混合流水车间多目标调度优化问题
13
作者 常大亮 史海波 刘昶 《中国机械工程》 EI CAS CSCD 北大核心 2024年第7期1269-1278,共10页
针对具有紧时、高能耗工序特征的混合流水车间调度问题,以优化产品暴露时间、最大完工时间和能源消耗为目标,建立混合流水车间调度模型,并提出一种改进的多目标粒子群算法进行有效求解。首先构建了基于ISDE指标的档案维护策略及局部邻... 针对具有紧时、高能耗工序特征的混合流水车间调度问题,以优化产品暴露时间、最大完工时间和能源消耗为目标,建立混合流水车间调度模型,并提出一种改进的多目标粒子群算法进行有效求解。首先构建了基于ISDE指标的档案维护策略及局部邻域搜索策略,辅助算法跃出局部极值及减少生产阻塞。之后,提出一种基于模糊理论的决策分析方法选取最优调度方案。最后,通过仿真实验验证提出的多目标调度模型与算法的可行性和优越性。 展开更多
关键词 混合流水车间调度问题 多目标粒子群优化算法 紧时性约束 高能耗
下载PDF
基于分组学习粒子群算法的众包软件项目调度
14
作者 申晓宁 徐继勇 +1 位作者 姚铖滨 宋丽妍 《计算机集成制造系统》 EI CSCD 北大核心 2024年第6期2056-2068,共13页
为解决众包软件项目调度问题中的开发者选择、任务分配和投入度确定3个强耦合子问题,引入开发者信誉度,考虑技能、工作时长、开发团队规模等约束,以项目完成质量和工期为目标建立数学模型。提出一种采用三段式混合编码的分组学习粒子群... 为解决众包软件项目调度问题中的开发者选择、任务分配和投入度确定3个强耦合子问题,引入开发者信誉度,考虑技能、工作时长、开发团队规模等约束,以项目完成质量和工期为目标建立数学模型。提出一种采用三段式混合编码的分组学习粒子群算法求解所建模型。所提算法根据适应度排序将种群划分为3组,不同分组的粒子数量随进化代数自适应变化,且各组根据不同的适应度采用不同的更新策略。将所提算法与10种具有代表性的算法在12个不同规模的众包软件项目调度算例中进行对比,结果表明,所提算法能够获得精度更高的调度方案。 展开更多
关键词 众包软件项目调度 粒子群优化 分组学习 混合编码 信誉度
下载PDF
基于混合粒子群算法的波浪能发电集群优化方法
15
作者 朱永强 朱显浩 《可再生能源》 CAS CSCD 北大核心 2024年第2期259-266,共8页
对波浪能发电集群的优化控制有助于波浪能的有效利用,为此文章提出了基于混合粒子群算法的波浪能发电集群优化方法。以直驱式发电装置为研究对象,探讨其构成发电集群短期尺度下稳定状态的数学模型,由简至繁依次考虑波浪动态压力、装置... 对波浪能发电集群的优化控制有助于波浪能的有效利用,为此文章提出了基于混合粒子群算法的波浪能发电集群优化方法。以直驱式发电装置为研究对象,探讨其构成发电集群短期尺度下稳定状态的数学模型,由简至繁依次考虑波浪动态压力、装置间辐射影响和遮挡效应,以便更准确地模拟一定密集度的波浪能发电装置部署下的实际效果。以集群功率最大化为优化目标,根据装置运动和海域能量约束,提出混合粒子群算法求解集群的最优参数,在传统算法基础上设定自适应惯性权重并加入交叉和变异操作,以应对复杂集群方程解空间的多峰性问题。算例结果验证了所述集群优化方法的有效性,求解质量良好;同时表明波浪能发电集群规模越大,装置之间的辐射影响越复杂,遮挡效应越明显。 展开更多
关键词 波浪能发电集群 辐射影响 遮挡效应 集群优化 混合粒子群算法
下载PDF
运输能力受限下分段建造的时空调度问题
16
作者 韩文民 袁德岭 +2 位作者 高龙龙 强永刚 费玉磊 《船舶工程》 CSCD 北大核心 2024年第7期1-11,35,共12页
分段建造作为船舶整个建造流程的关键环节之一,其空间资源和时间资源的动态协调性严重影响着船舶建造周期和订单交付。针对分段建造船体车间空间有限、时间组织和空间组织不协调,以及以往分段建造时空调度相关研究忽略运输能力限制等问... 分段建造作为船舶整个建造流程的关键环节之一,其空间资源和时间资源的动态协调性严重影响着船舶建造周期和订单交付。针对分段建造船体车间空间有限、时间组织和空间组织不协调,以及以往分段建造时空调度相关研究忽略运输能力限制等问题,以最大完工时间最小、总提前与延期惩罚值最小为优化目标,以空间大小、加工小组的异质性、运输设备的差异性与运输限制为约束条件,构建多目标时空调度模型,并基于交付期优先规则、空间定位规则和关键阻碍规则提出混合粒子群算法进行求解,最终以某船厂分段建造为例进行实例验证,结果表明:所提出的模型与算法有效降低了分段完工时间,提高了分段建造的准时化水平。研究结可为船舶智能制造以及分段制造执行系统(MES)的实际应用提供一种方法基础。 展开更多
关键词 船舶分段建造 运输限制 时空调度 混合粒子群算法
下载PDF
无人机17kW电机振动噪声分析与巡航转速下尖端噪声优化
17
作者 刘栋良 詹成根 +2 位作者 屈峰 陈黎君 史恒 《电工技术学报》 EI CSCD 北大核心 2024年第6期1749-1763,共15页
随着无人机的迅速发展,噪声问题影响消费者体验及AI交互、语音识别等技术,限制了无人机应用潜力。该文针对一台17 kW无人机用外转子永磁同步电机进行研究。为降低电机尖端振动噪声,且保留原电机电磁性能,重点提出优化磁极和定子开槽的... 随着无人机的迅速发展,噪声问题影响消费者体验及AI交互、语音识别等技术,限制了无人机应用潜力。该文针对一台17 kW无人机用外转子永磁同步电机进行研究。为降低电机尖端振动噪声,且保留原电机电磁性能,重点提出优化磁极和定子开槽的方法。具体以平均转矩、转矩脉动等作为约束条件,构建多目标优化数学模型,并利用混合粒子群优化算法求解。该文深入探讨磁极参数、定子开槽对低阶次径向气隙磁通密度空间谐波特征的影响。并对电机转子模态仿真,以研究径向电磁力与空间模态的作用机理。在多转速情况下,以巡航转速为重点,分析整体电机电磁振动噪声特征。最后,仿真和实验结果表明,电机在巡航转速下的尖端噪声显著减小。验证了优化结构对无人机电机尖端振动噪声有明显抑制作用,对解决无人机噪声问题具有重要意义。 展开更多
关键词 无人机外转子永磁同步电机 电磁振动噪声 巡航转速 混合粒子群优化算法
下载PDF
基于遗传算法特性的混合粒子群算法求解TSP问题
18
作者 陈琳 《白城师范学院学报》 2024年第5期73-78,共6页
为解决粒子群算法在旅行商问题上的收敛速度慢和路径最优化选择的问题,提出了一种新型的基于遗传算法特性的混合粒子群算法,对旅行商问题的最优路径进行规划.根据种群比例原则与迭代前的路径进行交叉、变异、复制等操作,建立了具有遗传... 为解决粒子群算法在旅行商问题上的收敛速度慢和路径最优化选择的问题,提出了一种新型的基于遗传算法特性的混合粒子群算法,对旅行商问题的最优路径进行规划.根据种群比例原则与迭代前的路径进行交叉、变异、复制等操作,建立了具有遗传算法特性的混合粒子群算法,并用于求解burma14问题.结果表明:相比传统的粒子群算法和模拟退火-禁忌搜索算法,混合粒子群算法在求解burma14问题中收敛时间与最优路径等指标上都有明显的优势,且随着迭代次数与种群个数的增大,算法的最优解逐渐减小;当最佳参数为种群个数150,迭代次数300时,最优解为30.179 424. 展开更多
关键词 混合粒子群算法 TSP问题 路径规划 影响因素
下载PDF
无人机遥感反演小麦地上生物量模型的特征选择
19
作者 吴立峰 徐文浩 韩宜秀 《南昌工程学院学报》 CAS 2024年第4期56-62,共7页
无人机多光谱技术能快速、无损地测定小麦地上生物量(AGB)。然而,多光谱方法在计算植被特征时会产生大量具有高度相关的重复特征。因此,建立结构简单、精度高的模型对特征进行筛选具有重要意义。本文提出了一种可以同时实现特征筛选与... 无人机多光谱技术能快速、无损地测定小麦地上生物量(AGB)。然而,多光谱方法在计算植被特征时会产生大量具有高度相关的重复特征。因此,建立结构简单、精度高的模型对特征进行筛选具有重要意义。本文提出了一种可以同时实现特征筛选与参数优化的混合编码灰狼粒子群优化算法(CGWOPSO)。同时,为评估基于该算法驱动的极限梯度提升模型(CGWOPSO-XGB)的性能,将其及基于两种流行特征筛选方法(Pearson和SHAP方法)的模型(P-XGB和S-XGB)的反演AGB表现进行了对比。结果表明,S-XGB模型优于P-XGB模型,前者均方根误差(RMSE)比后者低3.0%~16.3%;而CGWOPSO-XGB模型精度高于S-XGB模型,前者RMSE比后者低16.0%。 展开更多
关键词 混合编码 灰狼粒子群优化算法 SHAP 特征筛选 植被指数
下载PDF
基于多目标PSO混合优化的虚拟样本生成 被引量:1
20
作者 王丹丹 汤健 +1 位作者 夏恒 乔俊飞 《自动化学报》 EI CAS CSCD 北大核心 2024年第4期790-811,共22页
受限于检测技术难度、高时间与经济成本等原因,难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题,严重制约了数据驱动模型的泛化性能.针对以上问题,提出一种基于多目标粒子群优化(Multi-objective particle swarm optim... 受限于检测技术难度、高时间与经济成本等原因,难测参数的软测量模型建模样本存在数量少、分布稀疏与不平衡等问题,严重制约了数据驱动模型的泛化性能.针对以上问题,提出一种基于多目标粒子群优化(Multi-objective particle swarm optimization, MOPSO)混合优化的虚拟样本生成(Virtual sample generation, VSG)方法.首先,设计综合学习粒子群优化算法的种群表征机制,使其能够同时编码用于连续变量和离散变量;然后,定义具有多阶段多目标特性的综合学习粒子群优化算法适应度函数,使其能够在确保模型泛化性能的同时最小化虚拟样本数量;最后,提出面向虚拟样本生成的多目标混合优化任务以改进综合学习粒子群优化算法,使其能够适应虚拟样本优选过程的变维特性并提高收敛速度.同时,首次借鉴度量学习提出用于评价虚拟样本质量的综合评价指标和分布相似指标.利用基准数据集和真实工业数据集验证了所提方法的有效性和优越性. 展开更多
关键词 小样本建模 虚拟样本生成 混合优化 多目标粒子群优化 分布相似度
下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部