In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air...In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.展开更多
This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Ch...This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Chiang Mai tropical climate with a 200 Wp monocrystalline PVT module having dimensions of 1.601 m×0.828 m connected with two water tanks each of 60 L taken for hot and cool water storages.The module was facing south with 18o inclination.The electrical load was a 200 W halogen lamp.From experiments,by taking the module as a nocturnal radiative cooling surface,the cool water temperature in the cool storage tank could be reduced 2℃–3℃each night and the temperature could be reduced from 31.5℃to 22.1℃within 4 consecutive days.The cool water at approximately 23℃was also used to cool down the PVT module from noon when the PVT module temperature was rather high,and then the module temperature immediately dropped around 5℃and approximately 10%increase of electrical power could be achieved.A set of mathematical models was also developed to predict the PVT module temperature and the hot water temperature including the cool water temperature in the storage tanks during daytime and nighttime.The simulated results agreed well with the experimental data.展开更多
In this paper, an idea and a realization of a hybrid Operational solar system is presented and practically verified discussed on the base of the performance and efficiency results, is confirmed. solution for photovolt...In this paper, an idea and a realization of a hybrid Operational solar system is presented and practically verified discussed on the base of the performance and efficiency results, is confirmed. solution for photovoltaic and photothermal conversion is presented. by the series of experiments. Improvements of the construction are The synergy effect ofphotothermal and photovoltaic part cooperation展开更多
Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer eff...Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.展开更多
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta...Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.展开更多
At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under...At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy.展开更多
Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to com...Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.展开更多
This paper presents a new three-phase hybrid active power filter configuration that interconnects a passive high-pass filter in parallel with an active power filter and a photovoltaic system. The proposed configuratio...This paper presents a new three-phase hybrid active power filter configuration that interconnects a passive high-pass filter in parallel with an active power filter and a photovoltaic system. The proposed configuration can improves the filtering performance of the conventional active power filter, as well as simultaneously supply the power from the photovoltaic arrays to the load and utility. This paper will describe the proposed hybrid active power filter control using sliding mode with photovoltaic system. The proposed technique effectively filters harmonics under 1 kHz but also higher frequency to achieve wideband harmonics compensation. The THD of source current is reduced from 30.09% to 1.95%. The result indicates that the sliding mode controller can track the reference signals and have good dynamic characteristics.展开更多
Cooling the PV surface in a Photovoltaic Thermal system is a pivotal operational aspect to be taken into account to achieve optimized values of performance parameters in a Photovoltaic Thermal System.The experimental ...Cooling the PV surface in a Photovoltaic Thermal system is a pivotal operational aspect to be taken into account to achieve optimized values of performance parameters in a Photovoltaic Thermal System.The experimental design used in this study facilitates the flow of varying concentrations of Zn-water nanofluid in serpentine copper tubing installed at the rear of the PV panel thereby preventing the PV surface temperature from increasing beyond the threshold value at which a decrease in electrical efficiency starts to occur.This fusion of solar thermal with PV devices leads to better electrical and thermal efficiency values resulting in decreased cell degradation over time and maximization of the lifespan of the PV module and the energy output from the PV system.Due to the superior thermal heat properties of nanofluids,their usage in such systems has become increasingly widespread.Life cycle metrics which include Energy Payback period,Energy Production Factor and life cycle conversion efficiency were evaluated for the PVT system by exhaustively chalking fundamental parameters such as embodied energy of the PVT setup and the total energy output from the PVT system.This research aims to be a major milestone in the evolutionary journey of Photovoltaic Thermal modules by guiding the engineers working on the theory,design and implementation of PVT systems towards its economic feasibility,environmental impact and energy sustainability.展开更多
Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and...Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and fuel cell in the recent years. This paper describes dynamic modeling and simulation results of a small wind-photovoltaic-fuel cell hybrid energy system. The hybrid system consists of a 500 W wind turbine, a photovoltaic, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, a boost converter, controllers and a power converter that simulated using MATLAB solver. This kind of hybrid system is completely stand-alone, reliable and has high efficiency. In order to minimize sudden variations in voltage magnitude ultracapacitors are proposed. Power converter and inverter are used to produce ac output power. Dynamics of fuel-cell component such as double layer capacitance are also taken into account. Control scheme of fuel-cell flow controller and voltage regulators are based on PID controllers. Dynamic responses of the system for a step change in the electrical load and wind speed are presented. Results showed that the ability of the system in adapting itself to sudden changes and new conditions. Combination of PV and wind renewable sources is made the advantage of using this system in regions which have higher wind speeds in the seasons that suffers from less sunny days and vice versa.展开更多
A solar panel is described,in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector-absorber tandem...A solar panel is described,in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector-absorber tandem,which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovoltaic efficiency can be maintained,with thermal performance slightly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.展开更多
In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the...In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the efficient power supply without perfect stable control. Micro the early stage of network development related to micro network operation concepts are modeled on the control of large power system. Our proposed approach is proven to be effective and feasible through the numerical simulation and theoretical analysis which will be meaningful.展开更多
Solar thermal and photovoltaic applications are the most w idely used and the most successful w ay of commercial development in solar energy applications. Observation and assessment of solar thermal and photovoltaic r...Solar thermal and photovoltaic applications are the most w idely used and the most successful w ay of commercial development in solar energy applications. Observation and assessment of solar thermal and photovoltaic resources are the basis and key of their large-scale development and utilization. Using the observational data carried out from Beijing southern suburbs observation station of China M eteorological Administration in summer of 2009,preliminary solar thermal and photovoltaic resources characteristics for different w eather conditions,different angle and different directions are analyzed. The results show that:(1) In sunny,cloudy or rainy w eather conditions,both of solar thermal and photovoltaic sensors daily irradiance have consistent change in trend. Solar thermal irradiance is larger than photovoltaic. Under sunny conditions,solar thermal global radiation has about 2.7%higher than the photovoltaic global radiation. Under cloudy w eather conditions,solar thermal global radiation has about 3. 9%higher than the photovoltaic. Under rainy w eather conditions,solar thermal global radiation has about 20% higher than the photovoltaic.(2) For different inclined plane daily global radiation,southern latitude-15 °incline is the maximum and southern vertical surface is the minimum. The order from large to small is southern latitude-15 ° incline,southern latitude incline,southern latitude+15 °incline,horizontal surface and southern vertical surface. Southern latitude-15 °incline global radiation has about 41% higher than the southern vertical surface.(3) For different orientation vertical surface daily global radiation,southern vertical surface is the maximum and w estern vertical surface is the minimum,w hich eastern vertical surface is in the middle. Southern vertical surface global radiation has about 20% higher than the w estern vertical surface.展开更多
Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPh...Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.展开更多
Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H2O2) and distilled...Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H2O2) and distilled water(H2O). The functional groups on the surface of CNTs, changes in nanotube structure and morphology were characterized by Fourier transform infrared spectroscopy(FT-IR), Raman Spectroscopy, and transmission electron microscopy(TEM). It shows that hydroxyl(OH·) is successfully introduced. The surface defects of modified CNTs were obviously higher than those of original CNTs, and the degree of agglomeration was greatly reduced. Thermal conductivity of the composites was tested by protection heat flow meter method. Compared with unmodified CNTs/CB filling system, the thermal conductivity of hybrid composites is improved by an average of 5.8% with 1.5 phr(phr is parts per hundred rubber) of hydroxyl CNTs and 40 phr of CB filled. A three-dimensional heat conduction network composed of hydroxyl CNTs and CB, as observed by TEM, contributes to the good properties. Thermal conductivity of the hybrid composites increases as temperature rises. The mechanical properties of hybrid composites are also good with hydroxyl CNTs filled nanocomposites;the tensile strength, 100% and 300% tensile stress are improved by 10.1%, 22.4% and 26.2% respectively.展开更多
Organic photovoltaic devices are on the verge of commercialization with power conversion efficiencies exceeding 10 % in laboratory cells and above 8.5 % in modules. However, one of the main limitations hindering their...Organic photovoltaic devices are on the verge of commercialization with power conversion efficiencies exceeding 10 % in laboratory cells and above 8.5 % in modules. However, one of the main limitations hindering their mass scale production is the debatable inferior stability of organic photovoltaic devices in comparison to other technologies.Adequate donor/acceptor morphology of the active layer is required to provide carrier separation and transport to the electrodes. Unfortunately, the beneficial morphology for device performance is usually a kinetically frozen state which has not reached thermodynamic equilibrium. During the last 5 years, special efforts have been dedicated to isolate the effects related to morphology changes taking place within the active layer and compare to those affecting the interfaces with the external electrodes. The current review discusses some of the factors affecting the donor/acceptor morphology evolution as one of the major intrinsic degradation pathways. Special attention is paid to factors in the nano- and microscale domain.For example, phase segregation of the polymer and fullerene domains due to Ostwald ripening is a major factor in the microscale domain and is affected by the presence of additives, glass transition temperature of the polymers or use of crosslinkers in the active layer. Alternatively, the role of vertical segregation profile toward the external electrodes is key for device operation, being a clear case of nanoscale morphology evolution. For example, donor and acceptor molecules actually present at the external interfaces will determine the leakage current of the device, energy-level alignment, and interfacial recombination processes. Different techniques have been developed over the last few years to understand its relationship with the device efficiency. Of special interest are those techniques which enable in situ analysis being nondestructive as they can be used to study accelerated degradation experiments and some will be discussed here.展开更多
This paper reports thermal conductivity studies carried out on room temperature cure (RT) epoxy resin (LY556 + HY951) containing three different particulate fillers such as Graphite (Gr) a soft material, Silicon carbi...This paper reports thermal conductivity studies carried out on room temperature cure (RT) epoxy resin (LY556 + HY951) containing three different particulate fillers such as Graphite (Gr) a soft material, Silicon carbide (SiC) a hard material and a hybrid graphite & silicon carbide (Gr-SiC). The weight fractions of three different fillers were varied from 10 wt% to 40 wt% in steps of 10%. Increased filler fraction increases the thermal conductivity of epoxy composites for all the three types of fillers. The results show that the synergic effect of hybrid filler (Gr-SiC) improves the thermal conductivity of epoxy composites compared to that of Graphite or Silicon carbide. The improvement in thermal conductivity for the epoxy hybrid composite containing 20% SiC, 20% Gr and 60% epoxy is 136% when compared with neat epoxy. Significant improvement in the thermal conductivity is observed for 40% filled epoxies. The experimental results were compared with analytical models such as Maxwell, Hashin, Hamilton-Crosser, Nielsen, and Cheng-Vachon. The predicted thermal conductivity by analytical models is in agreement with experimental results.展开更多
This research focused on the dynamic mechanical and thermal properties of woven mat jute/kenaf/jute(J/K/J)and kenaf/jute/kenaf(K/J/K)hybrid composites.Dynamic mechanical analysis(DMA)and Thermo-gravimetric Analysis(TG...This research focused on the dynamic mechanical and thermal properties of woven mat jute/kenaf/jute(J/K/J)and kenaf/jute/kenaf(K/J/K)hybrid composites.Dynamic mechanical analysis(DMA)and Thermo-gravimetric Analysis(TGA)were used to study the effect of layering sequence on the thermal properties of kenaf/jute hybrid composites.The DMA results;it was found that the differences in the stacking sequence between the kenaf/jute composites do not affect their storage modulus,loss modulus and damping factor.From the TGA and DMA results,it has been shown that stacking sequence has given positive effect to the kenaf/jute hybrid composite compared to pure epoxy composite.This is because kenaf and jute fibre has increased the Tg values of the composites,thus affect the thermal degradation.Results showed that the storage modulus for kenaf/jute hybrid composites increased compared with pure epoxy composites with increasing temperature and the values of remained almost the same at glass transition temperature(Tg),the hybrid composite perhaps due to the improved fibre/matrix interface bonding.The preliminary analysis could provide a new direction for the creation of a novel hybrid composite which offers unique properties which cannot be accomplished in a single material system.展开更多
The temperature fields and the weld pool geometries for laser + GMAW-P hybrid welding, laser welding and pulsed gas metal arc welding (GMAW-P) are numerically simulated in quasi-steady state by using the developed ...The temperature fields and the weld pool geometries for laser + GMAW-P hybrid welding, laser welding and pulsed gas metal arc welding (GMAW-P) are numerically simulated in quasi-steady state by using the developed heat source models, respectively. The calculated weld cross-sectious of the three types of welding processes agree well with their respective measured results. Through comparison, it is found that the temperature distribution of laser+GMAW-P hybrid welding possesses the advantages of those in both laser and GMAW-P welding processes so that the improvement of welding productivity and weld quality are ensured.展开更多
Pb-Sn mixed perovskites are becoming increasingly popular as narrowbandgap(1.2–1.3 eV)light absorbers in single-junction perovskite solar cells(PSCs)and as bottom cells for all-perovskite tandem solar cells,for highe...Pb-Sn mixed perovskites are becoming increasingly popular as narrowbandgap(1.2–1.3 eV)light absorbers in single-junction perovskite solar cells(PSCs)and as bottom cells for all-perovskite tandem solar cells,for highefficiency,low-cost,lightweight,roll-to-roll printable photovoltaic(PV)applications.From the first report of planar Pb:Sn mixed PSCs in 2014,the power conversion efficiencies(PCE)have increased from 10%to 21%by the end of 2020 with an exponential growth in research conducted in this field.Despite much effort,the performance and stability of Pb-Sn mixed PSCs are still limited,which constrains their long-term use in all-perovskite tandem devices.This review highlights the avenues explored in improving different aspects of Pb-Sn mixed PSCs and provides a comprehensive discussion of the interdependent factors affecting the device performance.This includes compositional engineering of the perovskite crystal,absorber layer fabrication and crystallization methods,bandgap tuning,Sn4+reduction,and surface passivation of the absorber layer,as well as the selection of interlayers and electrodes of the final PSC.展开更多
文摘In this paper, we propose a thermal model of a hybrid photovoltaic/thermal concentration system. Starting from the thermal balance of the model, the equation is solved and simulated with a MATLAB code, considering air as the cooling fluid. This enabled us to evaluate some of the parameters influencing the electrical and thermal performance of this device. The results showed that the temperature, thermal efficiency and electrical efficiency delivered depend on the air mass flow rate. The electrical and thermal efficiencies for different values of air mass flow are encouraging, and demonstrate the benefits of cooling photovoltaic cells. The results show that thermal efficiency decreases air flow rate greater than 0.7 kg/s, whatever the value of the light concentration used. The thermal efficiency of the solar cell increases as the light concentration increases, whatever the air flow rate used. For a concentration equal to 30 sun, the thermal efficiency is 0.16 with an air flow rate equal to 0.005 kg/s;the thermal efficiency increases to 0.19 with an air flow rate equal to 0.1 kg/s at the same concentration. An interesting and useful finding was that the proposed numerical model allows the determination of the electrical as well as thermal efficiency of the hybrid CPV/T with air flow as cooling fluid.
文摘This paper proposed a new function of photovoltaic thermal(PVT)module to produce nocturnal cool water not just only generating electrical power and hot water during daytime.Experimental tests were carried out under Chiang Mai tropical climate with a 200 Wp monocrystalline PVT module having dimensions of 1.601 m×0.828 m connected with two water tanks each of 60 L taken for hot and cool water storages.The module was facing south with 18o inclination.The electrical load was a 200 W halogen lamp.From experiments,by taking the module as a nocturnal radiative cooling surface,the cool water temperature in the cool storage tank could be reduced 2℃–3℃each night and the temperature could be reduced from 31.5℃to 22.1℃within 4 consecutive days.The cool water at approximately 23℃was also used to cool down the PVT module from noon when the PVT module temperature was rather high,and then the module temperature immediately dropped around 5℃and approximately 10%increase of electrical power could be achieved.A set of mathematical models was also developed to predict the PVT module temperature and the hot water temperature including the cool water temperature in the storage tanks during daytime and nighttime.The simulated results agreed well with the experimental data.
文摘In this paper, an idea and a realization of a hybrid Operational solar system is presented and practically verified discussed on the base of the performance and efficiency results, is confirmed. solution for photovoltaic and photothermal conversion is presented. by the series of experiments. Improvements of the construction are The synergy effect ofphotothermal and photovoltaic part cooperation
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52130303,52327802,52303101,52173078,51973158)the China Postdoctoral Science Foundation(2023M732579)+2 种基金Young Elite Scientists Sponsorship Program by CAST(No.2022QNRC001)National Key R&D Program of China(No.2022YFB3805702)Joint Funds of Ministry of Education(8091B032218).
文摘Vertically oriented carbon structures constructed from low-dimen-sional carbon materials are ideal frameworks for high-performance thermal inter-face materials(TIMs).However,improving the interfacial heat-transfer efficiency of vertically oriented carbon structures is a challenging task.Herein,an orthotropic three-dimensional(3D)hybrid carbon network(VSCG)is fabricated by depositing vertically aligned carbon nanotubes(VACNTs)on the surface of a horizontally oriented graphene film(HOGF).The interfacial interaction between the VACNTs and HOGF is then optimized through an annealing strategy.After regulating the orientation structure of the VACNTs and filling the VSCG with polydimethylsi-loxane(PDMS),VSCG/PDMS composites with excellent 3D thermal conductive properties are obtained.The highest in-plane and through-plane thermal conduc-tivities of the composites are 113.61 and 24.37 W m^(-1)K^(-1),respectively.The high contact area of HOGF and good compressibility of VACNTs imbue the VSCG/PDMS composite with low thermal resistance.In addition,the interfacial heat-transfer efficiency of VSCG/PDMS composite in the TIM performance was improved by 71.3%compared to that of a state-of-the-art thermal pad.This new structural design can potentially realize high-performance TIMs that meet the need for high thermal conductivity and low contact thermal resistance in interfacial heat-transfer processes.
基金financially supported by the Sichuan Science and Technology Program(Grant Nos.2023YFH0087,2023YFH0085,2023YFH0086,and 2023NSFSC0990)State Key Laboratory of Polymer Materials Engineering(Grant Nos.sklpme2022-3-02 and sklpme2023-2-11)+1 种基金Tibet Foreign Experts Program(Grant No.2022wz002)supported by the King Abdullah University of Science and Technology(KAUST)Office of Research Administration(ORA)under Award Nos.OSR-CARF/CCF-3079 and OSR-2021-CRG10-4701.
文摘Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality.
基金This researchwas supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA133)the Natural Science Foundation of Gansu(No.21JR7RA258).
文摘At present,the operation and maintenance of photovoltaic power generation systems mainly comprise regular maintenance,breakdown maintenance,and condition-based maintenance,which is very likely to lead to over-or under-repair of equipment.Therefore,a preventive maintenance and replacement strategy for PV power generation systems based on reliability as a constraint is proposed.First,a hybrid failure function with a decreasing service age factor and an increasing failure rate factor is introduced to describe the deterioration of PV power generation equipment,and the equipment is replaced when its reliability drops to the replacement threshold in the last cycle.Then,based on the reliability as a constraint,the average maintenance cost and availability of the equipment are considered,and the non-periodic incomplete maintenance model of the PV power generation system is established to obtain the optimal number of repairs,each maintenance cycle and the replacement cycle of the PV power generation system components.Next,the inverter of a PV power plant is used as a research object.The model in this paper is compared and analyzed with the equal cycle maintenance model without considering reliability and the maintenance model without considering the equipment replacement threshold,Through model comparison,when the optimal maintenance strategy is(0.80,4),the average maintenance cost of this paper’s model are decreased by 20.3%and 5.54%and the availability is increased by 0.2395% and 0.0337%,respectively,compared with the equal-cycle maintenance model without considering the reliability constraint and the maintenance model without considering the equipment replacement threshold.Therefore,this maintenance model can ensure the high reliability of PV plant operation while increasing the equipment availability to improve the system economy.
基金Chinese Academy of Science (No.KGCX2- YW- 366)Ministry of Science and Technology(No. 2011AA05A106)
文摘Small-hydro power station is often used in remote areas beside a river,but it doesn't match electricity demand so well,especially in dry seasons. A photovoltaic (PV) system with battery is a suitable option to complement the electricity gap. In this paper,a new structure of megawatt-class PV system integrating battery at DC-bus (DC: direct current) is proposed to be used in hydro/PV hybrid power system,and 4 main designing considerations and several key equipments are discussed. In 2011,a 2 MWp PV station with the proposed structure was built up in Yushu,China. From stability analysis,the station shows a strong stability under load cut-in/off and solar irradiance's fluctuation.
文摘This paper presents a new three-phase hybrid active power filter configuration that interconnects a passive high-pass filter in parallel with an active power filter and a photovoltaic system. The proposed configuration can improves the filtering performance of the conventional active power filter, as well as simultaneously supply the power from the photovoltaic arrays to the load and utility. This paper will describe the proposed hybrid active power filter control using sliding mode with photovoltaic system. The proposed technique effectively filters harmonics under 1 kHz but also higher frequency to achieve wideband harmonics compensation. The THD of source current is reduced from 30.09% to 1.95%. The result indicates that the sliding mode controller can track the reference signals and have good dynamic characteristics.
文摘Cooling the PV surface in a Photovoltaic Thermal system is a pivotal operational aspect to be taken into account to achieve optimized values of performance parameters in a Photovoltaic Thermal System.The experimental design used in this study facilitates the flow of varying concentrations of Zn-water nanofluid in serpentine copper tubing installed at the rear of the PV panel thereby preventing the PV surface temperature from increasing beyond the threshold value at which a decrease in electrical efficiency starts to occur.This fusion of solar thermal with PV devices leads to better electrical and thermal efficiency values resulting in decreased cell degradation over time and maximization of the lifespan of the PV module and the energy output from the PV system.Due to the superior thermal heat properties of nanofluids,their usage in such systems has become increasingly widespread.Life cycle metrics which include Energy Payback period,Energy Production Factor and life cycle conversion efficiency were evaluated for the PVT system by exhaustively chalking fundamental parameters such as embodied energy of the PVT setup and the total energy output from the PVT system.This research aims to be a major milestone in the evolutionary journey of Photovoltaic Thermal modules by guiding the engineers working on the theory,design and implementation of PVT systems towards its economic feasibility,environmental impact and energy sustainability.
文摘Renewable energy systems are of importance as being modular, nature-friendly and domestic. Among renewable energy systems, a great deal of research has been conducted especially on photovoltaic effect, wind energy and fuel cell in the recent years. This paper describes dynamic modeling and simulation results of a small wind-photovoltaic-fuel cell hybrid energy system. The hybrid system consists of a 500 W wind turbine, a photovoltaic, a proton exchange membrane fuel cell (PEMFC), ultracapacitors, an electrolyzer, a boost converter, controllers and a power converter that simulated using MATLAB solver. This kind of hybrid system is completely stand-alone, reliable and has high efficiency. In order to minimize sudden variations in voltage magnitude ultracapacitors are proposed. Power converter and inverter are used to produce ac output power. Dynamics of fuel-cell component such as double layer capacitance are also taken into account. Control scheme of fuel-cell flow controller and voltage regulators are based on PID controllers. Dynamic responses of the system for a step change in the electrical load and wind speed are presented. Results showed that the ability of the system in adapting itself to sudden changes and new conditions. Combination of PV and wind renewable sources is made the advantage of using this system in regions which have higher wind speeds in the seasons that suffers from less sunny days and vice versa.
文摘A solar panel is described,in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector-absorber tandem,which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovoltaic efficiency can be maintained,with thermal performance slightly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.
文摘In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the efficient power supply without perfect stable control. Micro the early stage of network development related to micro network operation concepts are modeled on the control of large power system. Our proposed approach is proven to be effective and feasible through the numerical simulation and theoretical analysis which will be meaningful.
文摘Solar thermal and photovoltaic applications are the most w idely used and the most successful w ay of commercial development in solar energy applications. Observation and assessment of solar thermal and photovoltaic resources are the basis and key of their large-scale development and utilization. Using the observational data carried out from Beijing southern suburbs observation station of China M eteorological Administration in summer of 2009,preliminary solar thermal and photovoltaic resources characteristics for different w eather conditions,different angle and different directions are analyzed. The results show that:(1) In sunny,cloudy or rainy w eather conditions,both of solar thermal and photovoltaic sensors daily irradiance have consistent change in trend. Solar thermal irradiance is larger than photovoltaic. Under sunny conditions,solar thermal global radiation has about 2.7%higher than the photovoltaic global radiation. Under cloudy w eather conditions,solar thermal global radiation has about 3. 9%higher than the photovoltaic. Under rainy w eather conditions,solar thermal global radiation has about 20% higher than the photovoltaic.(2) For different inclined plane daily global radiation,southern latitude-15 °incline is the maximum and southern vertical surface is the minimum. The order from large to small is southern latitude-15 ° incline,southern latitude incline,southern latitude+15 °incline,horizontal surface and southern vertical surface. Southern latitude-15 °incline global radiation has about 41% higher than the southern vertical surface.(3) For different orientation vertical surface daily global radiation,southern vertical surface is the maximum and w estern vertical surface is the minimum,w hich eastern vertical surface is in the middle. Southern vertical surface global radiation has about 20% higher than the w estern vertical surface.
文摘Octaphenylsilsesquioxane(OPhS) was prepared by a modifying method and a new core-shell nanocomposite, octa(2,4-dinitrophenyl)silsesquioxane, [(R_2PhSiO_ 1.5)_8, R=—NO_2, ODNPhS], was synthesized by nitration of OPhS in a mixed acid solution of nitric and sulfuric acids at about 60 ℃. Their molecular structures were determined by DRIFTS, 1H NMR, 13C NMR spectra analysis. The thermal analysis shows that ODNPhS is an explosive that detonates at about 420 ℃.
基金Supported by the National Natural Science Foundation of China(51606107,51576102)the Collaborative Innovation Project of Green Tire and Rubber(0200501436)
文摘Natural rubber nanocomposites filled with hybrid fillers of multi-walled carbon nanotubes(CNTs) and carbon black(CB) were prepared. CNTs were ultrasonically modified in mixture of hydrogen peroxide(H2O2) and distilled water(H2O). The functional groups on the surface of CNTs, changes in nanotube structure and morphology were characterized by Fourier transform infrared spectroscopy(FT-IR), Raman Spectroscopy, and transmission electron microscopy(TEM). It shows that hydroxyl(OH·) is successfully introduced. The surface defects of modified CNTs were obviously higher than those of original CNTs, and the degree of agglomeration was greatly reduced. Thermal conductivity of the composites was tested by protection heat flow meter method. Compared with unmodified CNTs/CB filling system, the thermal conductivity of hybrid composites is improved by an average of 5.8% with 1.5 phr(phr is parts per hundred rubber) of hydroxyl CNTs and 40 phr of CB filled. A three-dimensional heat conduction network composed of hydroxyl CNTs and CB, as observed by TEM, contributes to the good properties. Thermal conductivity of the hybrid composites increases as temperature rises. The mechanical properties of hybrid composites are also good with hydroxyl CNTs filled nanocomposites;the tensile strength, 100% and 300% tensile stress are improved by 10.1%, 22.4% and 26.2% respectively.
基金supported by FP7 European collaborative project SUNFLOWER(FP7-ICT-2011-7contract No.287594)the Spanish Ministerio de Economía y Competitividad(project MAT2013-47192-C3-1-R)+1 种基金Generalitat Valenciana(project ISIC/2012/008 Institute of Nanotechnologies for Clean Energies)the Spanish Ministerio de Economía y Competitividad for a Ramón y Cajal Fellowship(RYC2014-16809)
文摘Organic photovoltaic devices are on the verge of commercialization with power conversion efficiencies exceeding 10 % in laboratory cells and above 8.5 % in modules. However, one of the main limitations hindering their mass scale production is the debatable inferior stability of organic photovoltaic devices in comparison to other technologies.Adequate donor/acceptor morphology of the active layer is required to provide carrier separation and transport to the electrodes. Unfortunately, the beneficial morphology for device performance is usually a kinetically frozen state which has not reached thermodynamic equilibrium. During the last 5 years, special efforts have been dedicated to isolate the effects related to morphology changes taking place within the active layer and compare to those affecting the interfaces with the external electrodes. The current review discusses some of the factors affecting the donor/acceptor morphology evolution as one of the major intrinsic degradation pathways. Special attention is paid to factors in the nano- and microscale domain.For example, phase segregation of the polymer and fullerene domains due to Ostwald ripening is a major factor in the microscale domain and is affected by the presence of additives, glass transition temperature of the polymers or use of crosslinkers in the active layer. Alternatively, the role of vertical segregation profile toward the external electrodes is key for device operation, being a clear case of nanoscale morphology evolution. For example, donor and acceptor molecules actually present at the external interfaces will determine the leakage current of the device, energy-level alignment, and interfacial recombination processes. Different techniques have been developed over the last few years to understand its relationship with the device efficiency. Of special interest are those techniques which enable in situ analysis being nondestructive as they can be used to study accelerated degradation experiments and some will be discussed here.
文摘This paper reports thermal conductivity studies carried out on room temperature cure (RT) epoxy resin (LY556 + HY951) containing three different particulate fillers such as Graphite (Gr) a soft material, Silicon carbide (SiC) a hard material and a hybrid graphite & silicon carbide (Gr-SiC). The weight fractions of three different fillers were varied from 10 wt% to 40 wt% in steps of 10%. Increased filler fraction increases the thermal conductivity of epoxy composites for all the three types of fillers. The results show that the synergic effect of hybrid filler (Gr-SiC) improves the thermal conductivity of epoxy composites compared to that of Graphite or Silicon carbide. The improvement in thermal conductivity for the epoxy hybrid composite containing 20% SiC, 20% Gr and 60% epoxy is 136% when compared with neat epoxy. Significant improvement in the thermal conductivity is observed for 40% filled epoxies. The experimental results were compared with analytical models such as Maxwell, Hashin, Hamilton-Crosser, Nielsen, and Cheng-Vachon. The predicted thermal conductivity by analytical models is in agreement with experimental results.
基金This work is supported by UPM under GP-IPS Grant 9486400.
文摘This research focused on the dynamic mechanical and thermal properties of woven mat jute/kenaf/jute(J/K/J)and kenaf/jute/kenaf(K/J/K)hybrid composites.Dynamic mechanical analysis(DMA)and Thermo-gravimetric Analysis(TGA)were used to study the effect of layering sequence on the thermal properties of kenaf/jute hybrid composites.The DMA results;it was found that the differences in the stacking sequence between the kenaf/jute composites do not affect their storage modulus,loss modulus and damping factor.From the TGA and DMA results,it has been shown that stacking sequence has given positive effect to the kenaf/jute hybrid composite compared to pure epoxy composite.This is because kenaf and jute fibre has increased the Tg values of the composites,thus affect the thermal degradation.Results showed that the storage modulus for kenaf/jute hybrid composites increased compared with pure epoxy composites with increasing temperature and the values of remained almost the same at glass transition temperature(Tg),the hybrid composite perhaps due to the improved fibre/matrix interface bonding.The preliminary analysis could provide a new direction for the creation of a novel hybrid composite which offers unique properties which cannot be accomplished in a single material system.
基金The authors are grateful to the financial support for this research from the National Key Technologies R&D program of China under Grant No. 2006BAF04B10, and The key project of Natural Science Foundation of Heilongjiang Province under Grant No. ZJG0601.
文摘The temperature fields and the weld pool geometries for laser + GMAW-P hybrid welding, laser welding and pulsed gas metal arc welding (GMAW-P) are numerically simulated in quasi-steady state by using the developed heat source models, respectively. The calculated weld cross-sectious of the three types of welding processes agree well with their respective measured results. Through comparison, it is found that the temperature distribution of laser+GMAW-P hybrid welding possesses the advantages of those in both laser and GMAW-P welding processes so that the improvement of welding productivity and weld quality are ensured.
基金R.M.I.B.and S.M.S.gratefully acknowledge support from the University of Surrey scholarshipsR.M.I.B.,R.A.S.,C.C.L.U.,and S.R.P.S.also acknowledge funding from EPSRC(EP/R028559/1 and GR/1922310/1)+1 种基金S.M.S.and S.R.P.S acknowledge support SilverRay Ltd.K.D.G.I.J.and S.R.P.S.gratefully acknowledgefinancial support from the Equality Foundation of Hong Kong.
文摘Pb-Sn mixed perovskites are becoming increasingly popular as narrowbandgap(1.2–1.3 eV)light absorbers in single-junction perovskite solar cells(PSCs)and as bottom cells for all-perovskite tandem solar cells,for highefficiency,low-cost,lightweight,roll-to-roll printable photovoltaic(PV)applications.From the first report of planar Pb:Sn mixed PSCs in 2014,the power conversion efficiencies(PCE)have increased from 10%to 21%by the end of 2020 with an exponential growth in research conducted in this field.Despite much effort,the performance and stability of Pb-Sn mixed PSCs are still limited,which constrains their long-term use in all-perovskite tandem devices.This review highlights the avenues explored in improving different aspects of Pb-Sn mixed PSCs and provides a comprehensive discussion of the interdependent factors affecting the device performance.This includes compositional engineering of the perovskite crystal,absorber layer fabrication and crystallization methods,bandgap tuning,Sn4+reduction,and surface passivation of the absorber layer,as well as the selection of interlayers and electrodes of the final PSC.