Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na...Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.展开更多
The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow S...The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.展开更多
Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting i...Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O asa base fluid. The mathematical formulation of flow configuration is presented in terms of differential systemthat isnonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heatedsurface with a constant temperature T. Numerical solutions to the governing mathematical model are calculatedby the RK45 algorithm. The results based on the numerical solution against various flow and thermal controllingparameters are presented in terms of line graphs. The specific results depict that the heat flux increases over thelubricated-indexed parameter.展开更多
Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid ...Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP.展开更多
In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired ...In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges.展开更多
To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously con...To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution.展开更多
Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where p...Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow.Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.展开更多
The Asiatic hybrid lily cultivar Lilium dazzling(family Liliaceae)is a perennial herbaceous bulbous plant with bright yellow flowers of ornamental values.It also shows resistance to diseases and abiotic stress,making ...The Asiatic hybrid lily cultivar Lilium dazzling(family Liliaceae)is a perennial herbaceous bulbous plant with bright yellow flowers of ornamental values.It also shows resistance to diseases and abiotic stress,making it an ideal parent for breeding studies.This study established a sterile culture system using scales of dazzling lily as explants to induce polyploidy.Adventitious buds growing to 1 cm were treated with different concentrations of colchicine(125,250 and 500μmol·L-1),pendimethalin or trifluralin(100,200 and 300μmol·L-1,respectively)for 12,24 and 36 h.Flow cytometry and chromosome counting were used to identify ploidy,and the phenotype of the polyploids was examined by stomatal observation and leaf index determination.With increasing mutagen concentration and exposure time,the mortality and mutagenic rate increased.The optimal treatment group was:300μmol·L-1 trifluralin for 12 h,which resulted in 15.55%mortality rate and 42.22%induction rate.The polyploid plants showed a significant increase in stomata length,leaf length and leaf width,with a decrease in stomatal density compared with the control plants.This study provided a basis for polyploid breeding.展开更多
Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study ...Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.展开更多
Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic char...Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic characteristics to increase the network reliability.Some people research network coding schemes for inter-flow or intra-flow,each type with its own advantages and disadvantages.In this paper,we propose a new mechanism,called MM-NCOPE,which integrates the idea of inter-flow and intra-flow coding.On the one hand,MM-NCOPE utilizes random liner coding to encode the NCOPE packets while NCOPE is a sub-protocol for optimizing the COPE algorithm by iteration.In NCOPE,packets are automatically matched by size to be coded.As a result,it improves the coding gain in some level.On the other hand,we adopt the partial Acknowledgement retransmission scheme to achieve high compactness and robustness.ACK is an independent packet with the highest priority rather than a part of the data packets.Compared with existing works on opportunistic network coding,our approach ensures the reliability of wireless links and improves the coding gain.展开更多
The motivation of this study is to investigate the turbulence-chemistry interactions by using probability density function (PDF) method. A consistent hybrid Reynolds Averaged Navier-Stokes (RANS)/PDF method is use...The motivation of this study is to investigate the turbulence-chemistry interactions by using probability density function (PDF) method. A consistent hybrid Reynolds Averaged Navier-Stokes (RANS)/PDF method is used to simulate the turbulent non-reacting and reacting flows. The joint fluctuating velocity-frequency-composition PDF equation coupled with the Reynolds averaged density, momentum and energy equations are solved on unstructured meshes by the Lagrangian Monte Carlo (MC) method combined with the finite volume (FV) method. The simulation of the axisymmetric bluff body stabilized non-reacting flow fields is presented in this paper. The calculated length of the recirculation zone is in good agreement with the experimental data. Moreover, the significant change of the flow pattern with the increase of the jet-to-coflow momentum flux ratio is well predicted. In addition, comparisons are made between the joint PDF model and two different Reynolds stress models.展开更多
The characteristics of heat transfer in the three-dimensional stagnationpoint flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid with anisotropic slip are investigated.The partial differenti...The characteristics of heat transfer in the three-dimensional stagnationpoint flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid with anisotropic slip are investigated.The partial differential equations are converted into a system of ordinary differential equations by valid similarity transformations.The simplified mathematical model is solved computationally by the bvp4c approach in the MATLAB operating system.This solving method is capable of generating more than one solutions when suitable initial guesses are proposed.The results are proven to have dual solutions,which consequently lead to the application of a stability analysis that verifies the achievability of the first solution.The findings reveal infinite values of the dual solutions at several measured parameters causing the non-appearance of the turning points and the critical values.The skin friction increases with the addition of nanoparticles,while the escalation of the anisotropic slip effect causes a reduction in the heat transfer rate.展开更多
The flow behavior in non-parallel walls is an important factor of any physical model including cavity flow and canals, which is applicable for diverging/converging channel. The present communication explains that the ...The flow behavior in non-parallel walls is an important factor of any physical model including cavity flow and canals, which is applicable for diverging/converging channel. The present communication explains that the flow of the hybrid nanomaterial subjected to the convergent/divergent channel has non-parallel walls. It is assumed that the hybrid nanomaterial movement is in the porous region. A Darcy-Forchheimer medium of porosity is considered to interpret the porosity features. A useful similarity function is adopted to get the strong ordinary coupled equations. Numerical solutions are achieved through the Runge-Kutta-Fehlberg(RKF) fourth-fifth order method, and they are validated with the existing results. Physical nature of the involving constraints is reported with the help of plots. It is explored that the velocity of divergent channel decreases, and convergent channel enhances for the higher solid volume faction. Further, the presence of inertia coefficient and porosity parameter amplifies the velocity at the wall.展开更多
In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computat...In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computational fluid dynamics(CFD)model can flexibly choose any existing large-eddy simulation(LES)method combined with RANS method to calculate the flow field.In addition,the DLES model and DDES model are selected as typical representatives of the turbulence model to compare the capture ability of the flow field mechanism.The internal flow field including the y+value,velocity distribution,turbulent kinetic energy and vortex structures is comprehensively analyzed.Finally,the results show that the new model has enough sensitivity to capture the information of the flow field and has more consistent velocity distribution with the experimental value,which shows its potential in practical engineering applications to some extent.展开更多
The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence char...The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.展开更多
This paper considers a scheduling problem in two-stage hybrid flow shop, where the first stage consists of two machines formed an open shop and the other stage has only one machine. The objective is to minimize the ma...This paper considers a scheduling problem in two-stage hybrid flow shop, where the first stage consists of two machines formed an open shop and the other stage has only one machine. The objective is to minimize the makespan, i.e., the maximum completion time of all jobs. We first show the problem is NP-hard in the strong sense, then we present two heuristics to solve the problem. Computational experiments show that the combined algorithm of the two heuristics performs well on randomly generated problem instances.展开更多
The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this wor...The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.展开更多
The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies ha...The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies have considered them simultaneously. This paper solves the integrated production and transportation scheduling problem(IPTSP) in hybrid flow shops, which is an extension of the hybrid flow shop scheduling problem(HFSP). In addition to the production scheduling on machines, the transportation scheduling process on automated guided vehicles(AGVs)is considered as another optimization process. In this problem, the transfer tasks of jobs are performed by a certain number of AGVs. To solve it, we make some preparation(including the establishment of task pool, the new solution representation and the new solution evaluation), which can ensure that satisfactory solutions can be found efficiently while appropriately reducing the scale of search space. Then, an effective genetic tabu search algorithm is used to minimize the makespan. Finally, two groups of instances are designed and three types of experiments are conducted to evaluate the performance of the proposed method. The results show that the proposed method is effective to solve the integrated production and transportation scheduling problem.展开更多
The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the visc...The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the viscous dissipation,and the nonlinear radiation are considered.The governing equations are obtained by using similarity transformations,and the numerical outcomes for the flow and the temperature field are noted by bvp4 c on MATLAB.The numerical solutions of the flow field are compared with the asymptotic behaviors of large shear-to-strain-rate ratio.The effects of variations of parameters involved are inspected for both nanofluid and hybrid nanofluid flows,temperature profiles,local Nusselt numbers,and skin frictions.It is concluded that the velocity and temperature fields in the hybrid nanophase function more rapidly than those in the nanofluid phase.展开更多
The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable incl...The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).展开更多
文摘Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect.
基金partially supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011531)the National Natural Science Foundation of China under Grant 62173356+2 种基金the Science and Technology Development Fund(FDCT),Macao SAR,under Grant 0019/2021/AZhuhai Industry-University-Research Project with Hongkong and Macao under Grant ZH22017002210014PWCthe Key Technologies for Scheduling and Optimization of Complex Distributed Manufacturing Systems(22JR10KA007).
文摘The flow shop scheduling problem is important for the manufacturing industry.Effective flow shop scheduling can bring great benefits to the industry.However,there are few types of research on Distributed Hybrid Flow Shop Problems(DHFSP)by learning assisted meta-heuristics.This work addresses a DHFSP with minimizing the maximum completion time(Makespan).First,a mathematical model is developed for the concerned DHFSP.Second,four Q-learning-assisted meta-heuristics,e.g.,genetic algorithm(GA),artificial bee colony algorithm(ABC),particle swarm optimization(PSO),and differential evolution(DE),are proposed.According to the nature of DHFSP,six local search operations are designed for finding high-quality solutions in local space.Instead of randomselection,Q-learning assists meta-heuristics in choosing the appropriate local search operations during iterations.Finally,based on 60 cases,comprehensive numerical experiments are conducted to assess the effectiveness of the proposed algorithms.The experimental results and discussions prove that using Q-learning to select appropriate local search operations is more effective than the random strategy.To verify the competitiveness of the Q-learning assistedmeta-heuristics,they are compared with the improved iterated greedy algorithm(IIG),which is also for solving DHFSP.The Friedman test is executed on the results by five algorithms.It is concluded that the performance of four Q-learning-assisted meta-heuristics are better than IIG,and the Q-learning-assisted PSO shows the best competitiveness.
文摘Thiswork investigates an oblique stagnation point flowof hybrid nanofluid over a rigid surface with power lawfluidas lubricated layers. Copper (Cu) and Silver (Ag) solid particles are used as hybrid particles acting in water H2O asa base fluid. The mathematical formulation of flow configuration is presented in terms of differential systemthat isnonlinear in nature. The thermal aspects of the flow field are also investigated by assuming the surface is a heatedsurface with a constant temperature T. Numerical solutions to the governing mathematical model are calculatedby the RK45 algorithm. The results based on the numerical solution against various flow and thermal controllingparameters are presented in terms of line graphs. The specific results depict that the heat flux increases over thelubricated-indexed parameter.
基金the National Natural Science Foundation of China(Grant Number 61573264).
文摘Bottleneck stage and reentrance often exist in real-life manufacturing processes;however,the previous research rarely addresses these two processing conditions in a scheduling problem.In this study,a reentrant hybrid flow shop scheduling problem(RHFSP)with a bottleneck stage is considered,and an elite-class teaching-learning-based optimization(ETLBO)algorithm is proposed to minimize maximum completion time.To produce high-quality solutions,teachers are divided into formal ones and substitute ones,and multiple classes are formed.The teacher phase is composed of teacher competition and teacher teaching.The learner phase is replaced with a reinforcement search of the elite class.Adaptive adjustment on teachers and classes is established based on class quality,which is determined by the number of elite solutions in class.Numerous experimental results demonstrate the effectiveness of new strategies,and ETLBO has a significant advantage in solving the considered RHFSP.
文摘In response to escalating challenges in energy conservation and emission reduction,this study delves into the complexities of heat transfer in two-phase flows and adjustments to combustion processes within coal-fired boilers.Utilizing a fusion of hybrid modeling and automation technologies,we develop soft measurement models for key combustion parameters,such as the net calorific value of coal,flue gas oxygen content,and fly ash carbon content,within theDistributedControl System(DCS).Validated with performance test data,thesemodels exhibit controlled root mean square error(RMSE)and maximum absolute error(MAXE)values,both within the range of 0.203.Integrated into their respective automatic control systems,thesemodels optimize two-phase flow heat transfer,finetune combustion conditions,and mitigate incomplete combustion.Furthermore,this paper conducts an in-depth exploration of the generationmechanismof nitrogen oxides(NOx)and low oxygen emission reduction technology in coal-fired boilers,demonstrating a substantial reduction in furnace exit NOx generation by 30%to 40%and the power supply coal consumption decreased by 1.62 g/(kW h).The research outcomes highlight the model’s rapid responsiveness,enabling prompt reflection of transient variations in various economic indicator parameters.This provides a more effective means for real-time monitoring of crucial variables in coal-fired boilers and facilitates timely combustion adjustments,underscoring notable achievements in boiler combustion.The research not only provides valuable and practical insights into the intricacies of two-phase flow heat transfer and heat exchange but also establishes a pioneering methodology for tackling industry challenges.
文摘To solve the distributed hybrid flow shop scheduling problem(DHFS)in raw glass manufacturing systems,we investigated an improved hyperplane assisted evolutionary algorithm(IhpaEA).Two objectives are simultaneously considered,namely,the maximum completion time and the total energy consumptions.Firstly,each solution is encoded by a three-dimensional vector,i.e.,factory assignment,scheduling,and machine assignment.Subsequently,an efficient initialization strategy embeds two heuristics are developed,which can increase the diversity of the population.Then,to improve the global search abilities,a Pareto-based crossover operator is designed to take more advantage of non-dominated solutions.Furthermore,a local search heuristic based on three parts encoding is embedded to enhance the searching performance.To enhance the local search abilities,the cooperation of the search operator is designed to obtain better non-dominated solutions.Finally,the experimental results demonstrate that the proposed algorithm is more efficient than the other three state-of-the-art algorithms.The results show that the Pareto optimal solution set obtained by the improved algorithm is superior to that of the traditional multiobjective algorithm in terms of diversity and convergence of the solution.
基金supported by the National Natural Science Foundation of China (3180031332261123001)+1 种基金Applied Basic Research Foundation of Yunnan Province (202301AT070378, 2019FB034)the “Light of West China” Program of the Chinese Academic of Sciences to J.-F.Huang。
文摘Hybridization plays a significant role in biological evolution. However, it is not clear whether ecological contingency differentially influences likelihood of hybridization, particularly at ecological margins where parental species may exhibit reduced fitnesses. Moreover, it is unknown whether future ecosystem change will increase the prevalence of hybridization. Ficus heterostyla and F. squamosa are closely related species co-distributed from southern Thailand to southwest China where hybridization, yielding viable seeds, has been documented. As a robust test of ecological factors driving hybridization, we investigated spatial hybridization signatures based on nuclear microsatellites from extensive population sampling across a widespread contact range. Both species showed high population differentiation and strong patterns of isolation by distance. Admixture estimates exposed asymmetric interspecific gene flow.Signatures of hybridization increase significantly towards higher latitude zones, peaking at the northern climatic margins. Geographic variation in reproductive phenology combined with ecologically challenging marginal habitats may promote this phenomenon. Our work is a first systematic evaluation of such patterns in a comprehensive, latitudinally-based clinal context, and indicates that tendency to hybridize appears strongly influenced by environmental conditions. Moreover, that future climate change scenarios will likely alter and possibly augment cases of hybridization at ecosystem scales.
文摘The Asiatic hybrid lily cultivar Lilium dazzling(family Liliaceae)is a perennial herbaceous bulbous plant with bright yellow flowers of ornamental values.It also shows resistance to diseases and abiotic stress,making it an ideal parent for breeding studies.This study established a sterile culture system using scales of dazzling lily as explants to induce polyploidy.Adventitious buds growing to 1 cm were treated with different concentrations of colchicine(125,250 and 500μmol·L-1),pendimethalin or trifluralin(100,200 and 300μmol·L-1,respectively)for 12,24 and 36 h.Flow cytometry and chromosome counting were used to identify ploidy,and the phenotype of the polyploids was examined by stomatal observation and leaf index determination.With increasing mutagen concentration and exposure time,the mortality and mutagenic rate increased.The optimal treatment group was:300μmol·L-1 trifluralin for 12 h,which resulted in 15.55%mortality rate and 42.22%induction rate.The polyploid plants showed a significant increase in stomata length,leaf length and leaf width,with a decrease in stomatal density compared with the control plants.This study provided a basis for polyploid breeding.
基金funded by King Mongkut’s University of Technology North Bangkok with Contract no.KMUTNB-Post-65-07。
文摘Hybrid nanofluids are remarkable functioning liquids that are intended to reduce the energy loss while maximizing the heat transmission.In the involvement of suction and nonlinear thermal radiation effects,this study attempted to explore the energy transmission features of the inclined magnetohydrodynamic(MHD)stagnation flow of CNTs-hybrid nanofluid across the nonlinear permeable stretching or shrinking sheet.This work also included some noteworthy features like chemical reactions,variable molecular diffusivity,quadratic convection,viscous dissipation,velocity slip and heat omission assessment.Employing appropriate similarity components,the model equations were modified to ODEs and computed by using the HAM technique.The impact of various relevant flow characteristics on movement,heat and concentration profiles was investigated and plotted on a graph.Considering various model factors,the significance of drag friction,heat and mass transfer rate were also computed in tabular and graphical form.This leads to the conclusion that such factors have a considerable impact on the dynamics of fluid as well as other engineering measurements of interest.Furthermore,viscous forces are dominated by increasing the values ofλ_(p),δ_(m)andδ_(q),and as a result,F(ξ)accelerates while the opposite trend is observed for M andφ.The drag friction is boosted by the augmentation M,λ_(p)andφ,but the rate of heat transfer declined.According to our findings,hybrid nanoliquid effects dominate that of ordinary nanofluid in terms of F(ξ),Θ(ξ)andφ(ξ)profiles.The HAM and the numerical technique(shooting method)were found to be in good agreement.
基金National Natural Science Foundation of China under Grant No. 60903196,60903175National Critical Patented Projects in the Next Generation Broadband Wireless Mobile Communication Network under Grant No. 2010ZX03006-001-01+1 种基金National High Technical Research and Development Program of China under Grant No. 2009AA01Z418Educational Commission of Hubei Province of China under Grant No. D20114401
文摘Although the wireless network is widely used in many fields,its characteristics such as high bit error rate and broadcast links may block its development.Network coding is an artistic way to exploit its intrinsic characteristics to increase the network reliability.Some people research network coding schemes for inter-flow or intra-flow,each type with its own advantages and disadvantages.In this paper,we propose a new mechanism,called MM-NCOPE,which integrates the idea of inter-flow and intra-flow coding.On the one hand,MM-NCOPE utilizes random liner coding to encode the NCOPE packets while NCOPE is a sub-protocol for optimizing the COPE algorithm by iteration.In NCOPE,packets are automatically matched by size to be coded.As a result,it improves the coding gain in some level.On the other hand,we adopt the partial Acknowledgement retransmission scheme to achieve high compactness and robustness.ACK is an independent packet with the highest priority rather than a part of the data packets.Compared with existing works on opportunistic network coding,our approach ensures the reliability of wireless links and improves the coding gain.
基金The project supported by the National Natural Science Foundation of China (50506028)Action Scheme for Invigorating Education Towards the twenty-first century
文摘The motivation of this study is to investigate the turbulence-chemistry interactions by using probability density function (PDF) method. A consistent hybrid Reynolds Averaged Navier-Stokes (RANS)/PDF method is used to simulate the turbulent non-reacting and reacting flows. The joint fluctuating velocity-frequency-composition PDF equation coupled with the Reynolds averaged density, momentum and energy equations are solved on unstructured meshes by the Lagrangian Monte Carlo (MC) method combined with the finite volume (FV) method. The simulation of the axisymmetric bluff body stabilized non-reacting flow fields is presented in this paper. The calculated length of the recirculation zone is in good agreement with the experimental data. Moreover, the significant change of the flow pattern with the increase of the jet-to-coflow momentum flux ratio is well predicted. In addition, comparisons are made between the joint PDF model and two different Reynolds stress models.
文摘The characteristics of heat transfer in the three-dimensional stagnationpoint flow past a stretching/shrinking surface of the Al2O3-Cu/H2O hybrid nanofluid with anisotropic slip are investigated.The partial differential equations are converted into a system of ordinary differential equations by valid similarity transformations.The simplified mathematical model is solved computationally by the bvp4c approach in the MATLAB operating system.This solving method is capable of generating more than one solutions when suitable initial guesses are proposed.The results are proven to have dual solutions,which consequently lead to the application of a stability analysis that verifies the achievability of the first solution.The findings reveal infinite values of the dual solutions at several measured parameters causing the non-appearance of the turning points and the critical values.The skin friction increases with the addition of nanoparticles,while the escalation of the anisotropic slip effect causes a reduction in the heat transfer rate.
文摘The flow behavior in non-parallel walls is an important factor of any physical model including cavity flow and canals, which is applicable for diverging/converging channel. The present communication explains that the flow of the hybrid nanomaterial subjected to the convergent/divergent channel has non-parallel walls. It is assumed that the hybrid nanomaterial movement is in the porous region. A Darcy-Forchheimer medium of porosity is considered to interpret the porosity features. A useful similarity function is adopted to get the strong ordinary coupled equations. Numerical solutions are achieved through the Runge-Kutta-Fehlberg(RKF) fourth-fifth order method, and they are validated with the existing results. Physical nature of the involving constraints is reported with the help of plots. It is explored that the velocity of divergent channel decreases, and convergent channel enhances for the higher solid volume faction. Further, the presence of inertia coefficient and porosity parameter amplifies the velocity at the wall.
基金Supported by the Open Fund of Key Laboratory of Road Construction Technology and Equipment of Chang’an University,Ministry of Education(310825171104)the Advanced Manufacturing Projects of Government and University Co-construction Program Funded by Jilin Province(SXGJSF2017-2)
文摘In order to verify the effectiveness and superiority of the dynamic hybrid RANS/LES(DHRL)model,the flow around a cylinder with sinusoidal fluctuating velocity at the inlet was used as the test case.The latest computational fluid dynamics(CFD)model can flexibly choose any existing large-eddy simulation(LES)method combined with RANS method to calculate the flow field.In addition,the DLES model and DDES model are selected as typical representatives of the turbulence model to compare the capture ability of the flow field mechanism.The internal flow field including the y+value,velocity distribution,turbulent kinetic energy and vortex structures is comprehensively analyzed.Finally,the results show that the new model has enough sensitivity to capture the information of the flow field and has more consistent velocity distribution with the experimental value,which shows its potential in practical engineering applications to some extent.
文摘The study of flow diversions in open channels plays an important practical role in the design and management of open-channel networks for irrigation or drainage. To accurately predict the mean flow and turbulence characteristics of open-channel dividing flows, a hybrid LES-RANS model, which combines the large eddy simulation (LES) model with the Reynolds-averaged Navier-Stokes (RANS) model, is proposed in the present study. The unsteady RANS model was used to simulate the upstream and downstream regions of a main channel, as well as the downstream region of a branch channel. The LES model was used to simulate the channel diversion region, where turbulent flow characteristics are complicated. Isotropic velocity fluctuations were added at the inflow interface of the LES region to trigger the generation of resolved turbulence. A method based on the virtual body force is proposed to impose Reynolds-averaged velocity fields near the outlet of the LES region in order to take downstream flow effects computed by the RANS model into account and dissipate the excessive turbulent fluctuations. This hybrid approach saves computational effort and makes it easier to properly specify inlet and outlet boundary conditions. Comparison between computational results and experimental data indicates that this relatively new modeling approach can accurately predict open-channel T-diversion flows.
基金Supported by the National Natural Science Foundation of China(11071220,11001242,11201428)Zhejiang Provincial Natural Science Foundation of China(LY13A010015)Educational Commission of Zhejiang Province of China(Y201019076)
文摘This paper considers a scheduling problem in two-stage hybrid flow shop, where the first stage consists of two machines formed an open shop and the other stage has only one machine. The objective is to minimize the makespan, i.e., the maximum completion time of all jobs. We first show the problem is NP-hard in the strong sense, then we present two heuristics to solve the problem. Computational experiments show that the combined algorithm of the two heuristics performs well on randomly generated problem instances.
基金Projects(61573144,61773165,61673175,61174040)supported by the National Natural Science Foundation of ChinaProject(222201717006)supported by the Fundamental Research Funds for the Central Universities,China
文摘The hybrid flow shop scheduling problem with unrelated parallel machine is a typical NP-hard combinatorial optimization problem, and it exists widely in chemical, manufacturing and pharmaceutical industry. In this work, a novel mathematic model for the hybrid flow shop scheduling problem with unrelated parallel machine(HFSPUPM) was proposed. Additionally, an effective hybrid estimation of distribution algorithm was proposed to solve the HFSPUPM, taking advantage of the features in the mathematic model. In the optimization algorithm, a new individual representation method was adopted. The(EDA) structure was used for global search while the teaching learning based optimization(TLBO) strategy was used for local search. Based on the structure of the HFSPUPM, this work presents a series of discrete operations. Simulation results show the effectiveness of the proposed hybrid algorithm compared with other algorithms.
基金Supported by National Key R&D Program of China (Grant No. 2019YFB1704603)National Natural Science Foundation of China (Grant Nos. U21B2029 and 51825502)。
文摘The connection between production scheduling and transportation scheduling is getting closer in smart manufacturing system, and both of those problems are summarized as NP-hard problems. However, only a few studies have considered them simultaneously. This paper solves the integrated production and transportation scheduling problem(IPTSP) in hybrid flow shops, which is an extension of the hybrid flow shop scheduling problem(HFSP). In addition to the production scheduling on machines, the transportation scheduling process on automated guided vehicles(AGVs)is considered as another optimization process. In this problem, the transfer tasks of jobs are performed by a certain number of AGVs. To solve it, we make some preparation(including the establishment of task pool, the new solution representation and the new solution evaluation), which can ensure that satisfactory solutions can be found efficiently while appropriately reducing the scale of search space. Then, an effective genetic tabu search algorithm is used to minimize the makespan. Finally, two groups of instances are designed and three types of experiments are conducted to evaluate the performance of the proposed method. The results show that the proposed method is effective to solve the integrated production and transportation scheduling problem.
文摘The heat transfer of Homann flow in the stagnation region of the Al2 O3-Cu/water hybrid nanofluid is investigated by adopting the Tiwari-Das model over a cylindrical disk.The effects of the nanoparticle shape,the viscous dissipation,and the nonlinear radiation are considered.The governing equations are obtained by using similarity transformations,and the numerical outcomes for the flow and the temperature field are noted by bvp4 c on MATLAB.The numerical solutions of the flow field are compared with the asymptotic behaviors of large shear-to-strain-rate ratio.The effects of variations of parameters involved are inspected for both nanofluid and hybrid nanofluid flows,temperature profiles,local Nusselt numbers,and skin frictions.It is concluded that the velocity and temperature fields in the hybrid nanophase function more rapidly than those in the nanofluid phase.
文摘The heat transfer rate of the thermal Marangoni convective flow of a hybrid nanomaterial is optimized by using the response surface methodology(RSM).The thermal phenomenon is modeled in the presence of a variable inclined magnetic field,thermal radiation,and an exponential heat source.Experimentally estimated values of the thermal conductivity and viscosity of the hybrid nanomaterial are utilized in the calculation.The governing intricate nonlinear problem is treated numerically,and a parametric analysis is carried out by using graphical visualizations.A finite difference-based numerical scheme is utilized in conjunction with the 4-stage Lobatto IIIa formula to solve the nonlinear governing problem.The interactive effects of the pertinent parameters on the heat transfer rate are presented by plotting the response surfaces and the contours obtained from the RSM.The mono and hybrid nanomaterial flow fields are compared.The hybrid nanomaterial possesses enhanced thermal fields for nanoparticle volume fractions less than 2%.The irregular heat source and the thermal radiation enhance the temperature profiles.The high level of the thermal radiation and the low levels of the exponential heat source and the angle of inclination(of the magnetic field)lead to the optimized heat transfer rate(Nux=7.46275).