In this paper an experimental investigation on the impact behaviour of hybrid composites is conducted by instrumental Charpy impact test. The variation of impact strength and impact toughness index of C/K and C/G hybr...In this paper an experimental investigation on the impact behaviour of hybrid composites is conducted by instrumental Charpy impact test. The variation of impact strength and impact toughness index of C/K and C/G hybrid composites of different matrices with hybrid ratio and interface number is revealed. The dynamic hybrid effect is also investigated from different aspects. Meanwhile, the estimating model for impact strength is established and the estimated values are in good agreement with experimented ones. The hybrid effect coefficients based on different definitions are organically related by the model. This provides a basis for the further study of the impact constitutive equation of hybrid composites.展开更多
The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were m...The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were manufactured. The physical and mechanical properties of the manufactured composites were measured according to standard methods. The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites. Also all the reinforced composites with carbon nanotube, glass fiber or bagasse fiber exhibited better properties rather than neat cement.The results indicated that bagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites. The hybrid nanocomposite containing10 % glass fiber, 10 % bagasse fiber and 1.5 % MWCNTs was selected as the best compound.展开更多
New silicon-containing phenyleneethynylene hybrid oligomers P2, P3, and P4 were synthesized via Sonogashira cross-coupling reactions of ethynyl-terminated silazane monomer N,N′-bis(4-ethynylphenyl)-1,1-diphenylsila...New silicon-containing phenyleneethynylene hybrid oligomers P2, P3, and P4 were synthesized via Sonogashira cross-coupling reactions of ethynyl-terminated silazane monomer N,N′-bis(4-ethynylphenyl)-1,1-diphenylsilazane(M1) and corresponding bis-(4-bromo-phenyl)-ended organosilicon unit containing monomers, respectively. These new oligomers were easily soluble in common solvents. The incorporation of flexible organosilicon units in the oligomers leads to blue-shift in both the UV-Vis absorption and fluorescence emission spectra similarly. The results of differential scanning calorimetry(DSC) indicate that the flexible units relieve the rigidity of oligomeric chain and provide favorable conformation for thermal cross-linking reactions. The oligomers show good thermal and thermal-oxidative stability from the thermogravimetric analysis(TGA), with their decomposition temperature at 10% weight loss(T10%) higher than 400 ?C under both nitrogen and air atmosphere.展开更多
A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffractio...A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffraction, ultraviolet–visible(UV–vis) diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy(SEM). A selective technique was also used to investigate the concentration of hydroxyl radicals during UV–vis irradiation of the Methyl Orange solution with the as-prepared samples. The C and N dopants enhanced visible light absorption and provided a longer lifetime for the photo-generated electron–hole pairs. The SEM images showed that the as-prepared sample is porous. The dark adsorption and photodegradation test for(C, N)-TiO2/brick showed good photodegradation and good recyclability. The best photodegradation rate was 94% after 2 hr. The maximum degradation rate was maintained even after the 6th cycle. The good photocatalytic properties are attributed to the enhanced visible light absorption, enhanced pollutant adsorption arising from the porous structure of the(C, N)-TiO2 thin film, and longer lifetime of the photo-generated electron–hole pairs.(C, N)-TiO2/brick should have potential commercial applications in photodegradation processes because of its low cost, good photodegradation, and excellent recyclability.展开更多
文摘In this paper an experimental investigation on the impact behaviour of hybrid composites is conducted by instrumental Charpy impact test. The variation of impact strength and impact toughness index of C/K and C/G hybrid composites of different matrices with hybrid ratio and interface number is revealed. The dynamic hybrid effect is also investigated from different aspects. Meanwhile, the estimating model for impact strength is established and the estimated values are in good agreement with experimented ones. The hybrid effect coefficients based on different definitions are organically related by the model. This provides a basis for the further study of the impact constitutive equation of hybrid composites.
文摘The objective of this investigation was to introduce a cement-based composite of higher quality. For this purpose new hybrid nanocomposite from bagasse fiber,glass fiber and multi-wall carbon nanotubes(MWCNTs)were manufactured. The physical and mechanical properties of the manufactured composites were measured according to standard methods. The properties of the manufactured hybrid nanocomposites were dramatically better than traditional composites. Also all the reinforced composites with carbon nanotube, glass fiber or bagasse fiber exhibited better properties rather than neat cement.The results indicated that bagasse fiber proved suitable for substitution of glass fiber as a reinforcing agent in the cement composites. The hybrid nanocomposite containing10 % glass fiber, 10 % bagasse fiber and 1.5 % MWCNTs was selected as the best compound.
基金financially supported by the National Natural Science Foundation of China(Nos.50673094 and 20774102)
文摘New silicon-containing phenyleneethynylene hybrid oligomers P2, P3, and P4 were synthesized via Sonogashira cross-coupling reactions of ethynyl-terminated silazane monomer N,N′-bis(4-ethynylphenyl)-1,1-diphenylsilazane(M1) and corresponding bis-(4-bromo-phenyl)-ended organosilicon unit containing monomers, respectively. These new oligomers were easily soluble in common solvents. The incorporation of flexible organosilicon units in the oligomers leads to blue-shift in both the UV-Vis absorption and fluorescence emission spectra similarly. The results of differential scanning calorimetry(DSC) indicate that the flexible units relieve the rigidity of oligomeric chain and provide favorable conformation for thermal cross-linking reactions. The oligomers show good thermal and thermal-oxidative stability from the thermogravimetric analysis(TGA), with their decomposition temperature at 10% weight loss(T10%) higher than 400 ?C under both nitrogen and air atmosphere.
基金supported by the National Natural Science Foundation of China (Nos. 51672090 and 51372092)
文摘A one-step microwave irradiation method was used to deposit carbon and nitrogen co-doped TiO2((C, N)-TiO2) on commercial brick((C, N)-TiO2/brick). The as-prepared samples were characterized by X-ray diffraction, ultraviolet–visible(UV–vis) diffuse reflectance spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, and scanning electron microscopy(SEM). A selective technique was also used to investigate the concentration of hydroxyl radicals during UV–vis irradiation of the Methyl Orange solution with the as-prepared samples. The C and N dopants enhanced visible light absorption and provided a longer lifetime for the photo-generated electron–hole pairs. The SEM images showed that the as-prepared sample is porous. The dark adsorption and photodegradation test for(C, N)-TiO2/brick showed good photodegradation and good recyclability. The best photodegradation rate was 94% after 2 hr. The maximum degradation rate was maintained even after the 6th cycle. The good photocatalytic properties are attributed to the enhanced visible light absorption, enhanced pollutant adsorption arising from the porous structure of the(C, N)-TiO2 thin film, and longer lifetime of the photo-generated electron–hole pairs.(C, N)-TiO2/brick should have potential commercial applications in photodegradation processes because of its low cost, good photodegradation, and excellent recyclability.