期刊文献+
共找到1,228篇文章
< 1 2 62 >
每页显示 20 50 100
Sub-6GHz Assisted mmWave Hybrid Beamforming with Self-Supervised Learning
1
作者 Li Hongyao Gao Feifei +3 位作者 Lin Bo Wu Huihui Gu Yuantao Xi Jianxiang 《China Communications》 2025年第1期158-170,共13页
In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to ... In this paper,we propose a sub-6GHz channel assisted hybrid beamforming(HBF)for mmWave system under both line-of-sight(LOS)and non-line-of-sight(NLOS)scenarios without mmWave channel estimation.Meanwhile,we resort to the selfsupervised approach to eliminate the need for labels,thus avoiding the accompanied high cost of data collection and annotation.We first construct the dense connection network(DCnet)with three modules:the feature extraction module for extracting channel characteristic from a large amount of channel data,the feature fusion module for combining multidimensional features,and the prediction module for generating the HBF matrices.Next,we establish a lightweight network architecture,named as LDnet,to reduce the number of model parameters and computational complexity.The proposed sub-6GHz assisted approach eliminates mmWave pilot resources compared to the method using mmWave channel information directly.The simulation results indicate that the proposed DCnet and LDnet can achieve the spectral efficiency that is superior to the traditional orthogonal matching pursuit(OMP)algorithm by 13.66% and 10.44% under LOS scenarios and by 32.35% and 27.75% under NLOS scenarios,respectively.Moreover,the LDnet achieves 98.52% reduction in the number of model parameters and 22.93% reduction in computational complexity compared to DCnet. 展开更多
关键词 hybrid beamforming mmWave selfsupervised learning sub-6GHz assisted mmWave transmission sub-6GHz channel
下载PDF
Deploying Hybrid Ensemble Machine Learning Techniques for Effective Cross-Site Scripting(XSS)Attack Detection
2
作者 Noor Ullah Bacha Songfeng Lu +3 位作者 Attiq Ur Rehman Muhammad Idrees Yazeed Yasin Ghadi Tahani Jaser Alahmadi 《Computers, Materials & Continua》 SCIE EI 2024年第10期707-748,共42页
Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive data.Traditional detection methods often fail to keep pace with ... Cross-Site Scripting(XSS)remains a significant threat to web application security,exploiting vulnerabilities to hijack user sessions and steal sensitive data.Traditional detection methods often fail to keep pace with the evolving sophistication of cyber threats.This paper introduces a novel hybrid ensemble learning framework that leverages a combination of advanced machine learning algorithms—Logistic Regression(LR),Support Vector Machines(SVM),eXtreme Gradient Boosting(XGBoost),Categorical Boosting(CatBoost),and Deep Neural Networks(DNN).Utilizing the XSS-Attacks-2021 dataset,which comprises 460 instances across various real-world trafficrelated scenarios,this framework significantly enhances XSS attack detection.Our approach,which includes rigorous feature engineering and model tuning,not only optimizes accuracy but also effectively minimizes false positives(FP)(0.13%)and false negatives(FN)(0.19%).This comprehensive methodology has been rigorously validated,achieving an unprecedented accuracy of 99.87%.The proposed system is scalable and efficient,capable of adapting to the increasing number of web applications and user demands without a decline in performance.It demonstrates exceptional real-time capabilities,with the ability to detect XSS attacks dynamically,maintaining high accuracy and low latency even under significant loads.Furthermore,despite the computational complexity introduced by the hybrid ensemble approach,strategic use of parallel processing and algorithm tuning ensures that the system remains scalable and performs robustly in real-time applications.Designed for easy integration with existing web security systems,our framework supports adaptable Application Programming Interfaces(APIs)and a modular design,facilitating seamless augmentation of current defenses.This innovation represents a significant advancement in cybersecurity,offering a scalable and effective solution for securing modern web applications against evolving threats. 展开更多
关键词 Cross-site scripting machine learning XSS detection stacking ensemble learning hybrid learning
下载PDF
Semi-supervised learning based hybrid beamforming under time-varying propagation environments
3
作者 Yin Long Hang Ding Simon Murphy 《Digital Communications and Networks》 SCIE CSCD 2024年第4期1168-1177,共10页
Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi... Hybrid precoding is considered as a promising low-cost technique for millimeter wave(mm-wave)massive Multi-Input Multi-Output(MIMO)systems.In this work,referring to the time-varying propagation circumstances,with semi-supervised Incremental Learning(IL),we propose an online hybrid beamforming scheme.Firstly,given the constraint of constant modulus on analog beamformer and combiner,we propose a new broadnetwork-based structure for the design model of hybrid beamforming.Compared with the existing network structure,the proposed network structure can achieve better transmission performance and lower complexity.Moreover,to enhance the efficiency of IL further,by combining the semi-supervised graph with IL,we propose a hybrid beamforming scheme based on chunk-by-chunk semi-supervised learning,where only few transmissions are required to calculate the label and all other unlabelled transmissions would also be put into a training data chunk.Unlike the existing single-by-single approach where transmissions during the model update are not taken into the consideration of model update,all transmissions,even the ones during the model update,would make contributions to model update in the proposed method.During the model update,the amount of unlabelled transmissions is very large and they also carry some information,the prediction performance can be enhanced to some extent by these unlabelled channel data.Simulation results demonstrate the spectral efficiency of the proposed method outperforms that of the existing single-by-single approach.Besides,we prove the general complexity of the proposed method is lower than that of the existing approach and give the condition under which its absolute complexity outperforms that of the existing approach. 展开更多
关键词 hybrid beamforming Time-varying environments Broad network Semi-supervised learning Online learning
下载PDF
Effectiveness of hybrid ensemble machine learning models for landslide susceptibility analysis:Evidence from Shimla district of North-west Indian Himalayan region
4
作者 SHARMA Aastha SAJJAD Haroon +2 位作者 RAHAMAN Md Hibjur SAHA Tamal Kanti BHUYAN Nirsobha 《Journal of Mountain Science》 SCIE CSCD 2024年第7期2368-2393,共26页
The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper ... The Indian Himalayan region is frequently experiencing climate change-induced landslides.Thus,landslide susceptibility assessment assumes greater significance for lessening the impact of a landslide hazard.This paper makes an attempt to assess landslide susceptibility in Shimla district of the northwest Indian Himalayan region.It examined the effectiveness of random forest(RF),multilayer perceptron(MLP),sequential minimal optimization regression(SMOreg)and bagging ensemble(B-RF,BSMOreg,B-MLP)models.A landslide inventory map comprising 1052 locations of past landslide occurrences was classified into training(70%)and testing(30%)datasets.The site-specific influencing factors were selected by employing a multicollinearity test.The relationship between past landslide occurrences and influencing factors was established using the frequency ratio method.The effectiveness of machine learning models was verified through performance assessors.The landslide susceptibility maps were validated by the area under the receiver operating characteristic curves(ROC-AUC),accuracy,precision,recall and F1-score.The key performance metrics and map validation demonstrated that the BRF model(correlation coefficient:0.988,mean absolute error:0.010,root mean square error:0.058,relative absolute error:2.964,ROC-AUC:0.947,accuracy:0.778,precision:0.819,recall:0.917 and F-1 score:0.865)outperformed the single classifiers and other bagging ensemble models for landslide susceptibility.The results show that the largest area was found under the very high susceptibility zone(33.87%),followed by the low(27.30%),high(20.68%)and moderate(18.16%)susceptibility zones.The factors,namely average annual rainfall,slope,lithology,soil texture and earthquake magnitude have been identified as the influencing factors for very high landslide susceptibility.Soil texture,lineament density and elevation have been attributed to high and moderate susceptibility.Thus,the study calls for devising suitable landslide mitigation measures in the study area.Structural measures,an immediate response system,community participation and coordination among stakeholders may help lessen the detrimental impact of landslides.The findings from this study could aid decision-makers in mitigating future catastrophes and devising suitable strategies in other geographical regions with similar geological characteristics. 展开更多
关键词 Landslide susceptibility Site-specific factors Machine learning models hybrid ensemble learning Geospatial techniques Himalayan region
下载PDF
Intelligent Machine Learning Based Brain Tumor Segmentation through Multi-Layer Hybrid U-Net with CNN Feature Integration
5
作者 Sharaf J.Malebary 《Computers, Materials & Continua》 SCIE EI 2024年第4期1301-1317,共17页
Brain tumors are a pressing public health concern, characterized by their high mortality and morbidity rates.Nevertheless, the manual segmentation of brain tumors remains a laborious and error-prone task, necessitatin... Brain tumors are a pressing public health concern, characterized by their high mortality and morbidity rates.Nevertheless, the manual segmentation of brain tumors remains a laborious and error-prone task, necessitatingthe development of more precise and efficient methodologies. To address this formidable challenge, we proposean advanced approach for segmenting brain tumorMagnetic Resonance Imaging (MRI) images that harnesses theformidable capabilities of deep learning and convolutional neural networks (CNNs). While CNN-based methodshave displayed promise in the realm of brain tumor segmentation, the intricate nature of these tumors, markedby irregular shapes, varying sizes, uneven distribution, and limited available data, poses substantial obstacles toachieving accurate semantic segmentation. In our study, we introduce a pioneering Hybrid U-Net framework thatseamlessly integrates the U-Net and CNN architectures to surmount these challenges. Our proposed approachencompasses preprocessing steps that enhance image visualization, a customized layered U-Net model tailoredfor precise segmentation, and the inclusion of dropout layers to mitigate overfitting during the training process.Additionally, we leverage the CNN mechanism to exploit contextual information within brain tumorMRI images,resulting in a substantial enhancement in segmentation accuracy.Our experimental results attest to the exceptionalperformance of our framework, with accuracy rates surpassing 97% across diverse datasets, showcasing therobustness and effectiveness of our approach. Furthermore, we conduct a comprehensive assessment of ourmethod’s capabilities by evaluating various performance measures, including the sensitivity, Jaccard-index, andspecificity. Our proposed model achieved 99% accuracy. The implications of our findings are profound. Theproposed Hybrid U-Net model emerges as a highly promising diagnostic tool, poised to revolutionize brain tumorimage segmentation for radiologists and clinicians. 展开更多
关键词 Brain tumor hybrid U-Net CLAHE transfer learning MRI images
下载PDF
Reinforcement Learning-Based Energy Management for Hybrid Power Systems:State-of-the-Art Survey,Review,and Perspectives
6
作者 Xiaolin Tang Jiaxin Chen +4 位作者 Yechen Qin Teng Liu Kai Yang Amir Khajepour Shen Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期1-25,共25页
The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art ... The new energy vehicle plays a crucial role in green transportation,and the energy management strategy of hybrid power systems is essential for ensuring energy-efficient driving.This paper presents a state-of-the-art survey and review of reinforcement learning-based energy management strategies for hybrid power systems.Additionally,it envisions the outlook for autonomous intelligent hybrid electric vehicles,with reinforcement learning as the foundational technology.First of all,to provide a macro view of historical development,the brief history of deep learning,reinforcement learning,and deep reinforcement learning is presented in the form of a timeline.Then,the comprehensive survey and review are conducted by collecting papers from mainstream academic databases.Enumerating most of the contributions based on three main directions—algorithm innovation,powertrain innovation,and environment innovation—provides an objective review of the research status.Finally,to advance the application of reinforcement learning in autonomous intelligent hybrid electric vehicles,future research plans positioned as“Alpha HEV”are envisioned,integrating Autopilot and energy-saving control. 展开更多
关键词 New energy vehicle hybrid power system Reinforcement learning Energy management strategy
下载PDF
Human Interaction Recognition in Surveillance Videos Using Hybrid Deep Learning and Machine Learning Models
7
作者 Vesal Khean Chomyong Kim +5 位作者 Sunjoo Ryu Awais Khan Min Kyung Hong Eun Young Kim Joungmin Kim Yunyoung Nam 《Computers, Materials & Continua》 SCIE EI 2024年第10期773-787,共15页
Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their mov... Human Interaction Recognition(HIR)was one of the challenging issues in computer vision research due to the involvement of multiple individuals and their mutual interactions within video frames generated from their movements.HIR requires more sophisticated analysis than Human Action Recognition(HAR)since HAR focuses solely on individual activities like walking or running,while HIR involves the interactions between people.This research aims to develop a robust system for recognizing five common human interactions,such as hugging,kicking,pushing,pointing,and no interaction,from video sequences using multiple cameras.In this study,a hybrid Deep Learning(DL)and Machine Learning(ML)model was employed to improve classification accuracy and generalizability.The dataset was collected in an indoor environment with four-channel cameras capturing the five types of interactions among 13 participants.The data was processed using a DL model with a fine-tuned ResNet(Residual Networks)architecture based on 2D Convolutional Neural Network(CNN)layers for feature extraction.Subsequently,machine learning models were trained and utilized for interaction classification using six commonly used ML algorithms,including SVM,KNN,RF,DT,NB,and XGBoost.The results demonstrate a high accuracy of 95.45%in classifying human interactions.The hybrid approach enabled effective learning,resulting in highly accurate performance across different interaction types.Future work will explore more complex scenarios involving multiple individuals based on the application of this architecture. 展开更多
关键词 Convolutional neural network deep learning human interaction recognition ResNet skeleton joint key points human pose estimation hybrid deep learning and machine learning
下载PDF
A Hybrid Machine Learning Approach for Improvised QoE in Video Services over 5G Wireless Networks
8
作者 K.B.Ajeyprasaath P.Vetrivelan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3195-3213,共19页
Video streaming applications have grown considerably in recent years.As a result,this becomes one of the most significant contributors to global internet traffic.According to recent studies,the telecommunications indu... Video streaming applications have grown considerably in recent years.As a result,this becomes one of the most significant contributors to global internet traffic.According to recent studies,the telecommunications industry loses millions of dollars due to poor video Quality of Experience(QoE)for users.Among the standard proposals for standardizing the quality of video streaming over internet service providers(ISPs)is the Mean Opinion Score(MOS).However,the accurate finding of QoE by MOS is subjective and laborious,and it varies depending on the user.A fully automated data analytics framework is required to reduce the inter-operator variability characteristic in QoE assessment.This work addresses this concern by suggesting a novel hybrid XGBStackQoE analytical model using a two-level layering technique.Level one combines multiple Machine Learning(ML)models via a layer one Hybrid XGBStackQoE-model.Individual ML models at level one are trained using the entire training data set.The level two Hybrid XGBStackQoE-Model is fitted using the outputs(meta-features)of the layer one ML models.The proposed model outperformed the conventional models,with an accuracy improvement of 4 to 5 percent,which is still higher than the current traditional models.The proposed framework could significantly improve video QoE accuracy. 展开更多
关键词 hybrid XGBStackQoE-model machine learning MOS performance metrics QOE 5G video services
下载PDF
Energy-Efficient Traffic Offloading for RSMA-Based Hybrid Satellite Terrestrial Networks with Deep Reinforcement Learning
9
作者 Qingmiao Zhang Lidong Zhu +1 位作者 Yanyan Chen Shan Jiang 《China Communications》 SCIE CSCD 2024年第2期49-58,共10页
As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can p... As the demands of massive connections and vast coverage rapidly grow in the next wireless communication networks, rate splitting multiple access(RSMA) is considered to be the new promising access scheme since it can provide higher efficiency with limited spectrum resources. In this paper, combining spectrum splitting with rate splitting, we propose to allocate resources with traffic offloading in hybrid satellite terrestrial networks. A novel deep reinforcement learning method is adopted to solve this challenging non-convex problem. However, the neverending learning process could prohibit its practical implementation. Therefore, we introduce the switch mechanism to avoid unnecessary learning. Additionally, the QoS constraint in the scheme can rule out unsuccessful transmission. The simulation results validates the energy efficiency performance and the convergence speed of the proposed algorithm. 展开更多
关键词 deep reinforcement learning energy efficiency hybrid satellite terrestrial networks rate splitting multiple access traffic offloading
下载PDF
Software Defect Prediction Using Hybrid Machine Learning Techniques: A Comparative Study
10
作者 Hemant Kumar Vipin Saxena 《Journal of Software Engineering and Applications》 2024年第4期155-171,共17页
When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect pr... When a customer uses the software, then it is possible to occur defects that can be removed in the updated versions of the software. Hence, in the present work, a robust examination of cross-project software defect prediction is elaborated through an innovative hybrid machine learning framework. The proposed technique combines an advanced deep neural network architecture with ensemble models such as Support Vector Machine (SVM), Random Forest (RF), and XGBoost. The study evaluates the performance by considering multiple software projects like CM1, JM1, KC1, and PC1 using datasets from the PROMISE Software Engineering Repository. The three hybrid models that are compared are Hybrid Model-1 (SVM, RandomForest, XGBoost, Neural Network), Hybrid Model-2 (GradientBoosting, DecisionTree, LogisticRegression, Neural Network), and Hybrid Model-3 (KNeighbors, GaussianNB, Support Vector Classification (SVC), Neural Network), and the Hybrid Model 3 surpasses the others in terms of recall, F1-score, accuracy, ROC AUC, and precision. The presented work offers valuable insights into the effectiveness of hybrid techniques for cross-project defect prediction, providing a comparative perspective on early defect identification and mitigation strategies. . 展开更多
关键词 Defect Prediction hybrid Techniques Ensemble Models Machine learning Neural Network
下载PDF
Enhanced Deep Reinforcement Learning Strategy for Energy Management in Plug-in Hybrid Electric Vehicles with Entropy Regularization and Prioritized Experience Replay
11
作者 Li Wang Xiaoyong Wang 《Energy Engineering》 EI 2024年第12期3953-3979,共27页
Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different ... Plug-in Hybrid Electric Vehicles(PHEVs)represent an innovative breed of transportation,harnessing diverse power sources for enhanced performance.Energy management strategies(EMSs)that coordinate and control different energy sources is a critical component of PHEV control technology,directly impacting overall vehicle performance.This study proposes an improved deep reinforcement learning(DRL)-based EMSthat optimizes realtime energy allocation and coordinates the operation of multiple power sources.Conventional DRL algorithms struggle to effectively explore all possible state-action combinations within high-dimensional state and action spaces.They often fail to strike an optimal balance between exploration and exploitation,and their assumption of a static environment limits their ability to adapt to changing conditions.Moreover,these algorithms suffer from low sample efficiency.Collectively,these factors contribute to convergence difficulties,low learning efficiency,and instability.To address these challenges,the Deep Deterministic Policy Gradient(DDPG)algorithm is enhanced using entropy regularization and a summation tree-based Prioritized Experience Replay(PER)method,aiming to improve exploration performance and learning efficiency from experience samples.Additionally,the correspondingMarkovDecision Process(MDP)is established.Finally,an EMSbased on the improvedDRLmodel is presented.Comparative simulation experiments are conducted against rule-based,optimization-based,andDRL-based EMSs.The proposed strategy exhibitsminimal deviation fromthe optimal solution obtained by the dynamic programming(DP)strategy that requires global information.In the typical driving scenarios based onWorld Light Vehicle Test Cycle(WLTC)and New European Driving Cycle(NEDC),the proposed method achieved a fuel consumption of 2698.65 g and an Equivalent Fuel Consumption(EFC)of 2696.77 g.Compared to the DP strategy baseline,the proposed method improved the fuel efficiency variances(FEV)by 18.13%,15.1%,and 8.37%over the Deep QNetwork(DQN),Double DRL(DDRL),and original DDPG methods,respectively.The observational outcomes demonstrate that the proposed EMS based on improved DRL framework possesses good real-time performance,stability,and reliability,effectively optimizing vehicle economy and fuel consumption. 展开更多
关键词 Plug-in hybrid electric vehicles deep reinforcement learning energy management strategy deep deterministic policy gradient entropy regularization prioritized experience replay
下载PDF
Spatial Heterogeneity Modeling Using Machine Learning Based on a Hybrid of Random Forest and Convolutional Neural Network (CNN)
12
作者 Amadou Kindy Barry Anthony Waititu Gichuhi Lawrence Nderu 《Journal of Data Analysis and Information Processing》 2024年第3期319-347,共29页
Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a p... Spatial heterogeneity refers to the variation or differences in characteristics or features across different locations or areas in space. Spatial data refers to information that explicitly or indirectly belongs to a particular geographic region or location, also known as geo-spatial data or geographic information. Focusing on spatial heterogeneity, we present a hybrid machine learning model combining two competitive algorithms: the Random Forest Regressor and CNN. The model is fine-tuned using cross validation for hyper-parameter adjustment and performance evaluation, ensuring robustness and generalization. Our approach integrates Global Moran’s I for examining global autocorrelation, and local Moran’s I for assessing local spatial autocorrelation in the residuals. To validate our approach, we implemented the hybrid model on a real-world dataset and compared its performance with that of the traditional machine learning models. Results indicate superior performance with an R-squared of 0.90, outperforming RF 0.84 and CNN 0.74. This study contributed to a detailed understanding of spatial variations in data considering the geographical information (Longitude & Latitude) present in the dataset. Our results, also assessed using the Root Mean Squared Error (RMSE), indicated that the hybrid yielded lower errors, showing a deviation of 53.65% from the RF model and 63.24% from the CNN model. Additionally, the global Moran’s I index was observed to be 0.10. This study underscores that the hybrid was able to predict correctly the house prices both in clusters and in dispersed areas. 展开更多
关键词 Spatial Heterogeneity Spatial Data Feature Selection STANDARDIZATION Machine learning Models hybrid Models
下载PDF
Advancing Early Detection of Colorectal Adenomatous Polyps via Genetic Data Analysis: A Hybrid Machine Learning Approach
13
作者 Ahmed S. Maklad Mohamed A. Mahdy +2 位作者 Amer Malki Noboru Niki Abdallah A. Mohamed 《Journal of Computer and Communications》 2024年第7期23-38,共16页
In this study, a hybrid machine learning (HML)-based approach, incorporating Genetic data analysis (GDA), is proposed to accurately identify the presence of adenomatous colorectal polyps (ACRP) which is a crucial earl... In this study, a hybrid machine learning (HML)-based approach, incorporating Genetic data analysis (GDA), is proposed to accurately identify the presence of adenomatous colorectal polyps (ACRP) which is a crucial early detector of colorectal cancer (CRC). The present study develops a classification ensemble model based on tuned hyperparameters. Surpassing accuracy percentages of early detection approaches used in previous studies, the current method exhibits exceptional performance in identifying ACRP and diagnosing CRC, overcoming limitations of CRC traditional methods that are based on error-prone manual examination. Particularly, the method demonstrates the following CRP identification accuracy data: 97.7 ± 1.1, precision: 94.3 ± 5, recall: 96.0 ± 3, F1-score: 95.7 ± 4, specificity: 97.3 ± 1.2, average AUC: 0.97.3 ± 0.02, and average p-value: 0.0425 ± 0.07. The findings underscore the potential of this method for early detection of ACRP as well as clinical use in the development of CRC treatment planning strategies. The advantages of this approach are highly expected to contribute to the prevention and reduction of CRC mortality. 展开更多
关键词 Colorectal Adenoma Detection Colorectal Cancer Diagnosis hybrid Machine learning Genetics Analysis
下载PDF
A Review on Physical,Online and Hybrid Teaching and Learning Pedagogy for Fashion Design Courses in China
14
作者 Andi Ma1 HARRINNI MD NOOR 《Review of Educational Theory》 2024年第2期1-14,共14页
In undergraduate fashion design education,the main focus is on clothing design,fashion brand garments,and design trends,especially on how to create and market these designs.Higher vocational education emphasizes devel... In undergraduate fashion design education,the main focus is on clothing design,fashion brand garments,and design trends,especially on how to create and market these designs.Higher vocational education emphasizes developing design skills and methods,transforming design processes,and managing clothing production.In China,the first undergraduate major in fashion design started in 1983 at Suzhou Silk Institute of Technology,which used to be linked to the Ministry of Textile Industry.The mode of teaching and learning delivery of fashion design courses just like other courses,started with face-to-face teaching in physical classroom and practical training classes.However,due to fast development in educational technology and movement restriction during COVID-19 pandemic,the fashion design education is adapting the innovative learning management system and revolutionized into online and hybrid delivery of teaching and learning content.In this review,fashion design courses in China education system will be elaborated and comparison of physical,online,and hybrid delivery of fashion design course will be discussed. 展开更多
关键词 Online class hybrid Fashion design course learning management system
下载PDF
Hybrid Teaching Reform of Veterinary Microbiology Based on the Combination of Virtual Simulation and Problem-Based Learning
15
作者 Jiedan Liao 《Journal of Contemporary Educational Research》 2024年第9期1-9,共9页
The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teachin... The Veterinary Microbiology course is centered around the diagnosis and testing of pathogenic microorganisms,with the core value of“moral education and character development.”It reconstructs multidimensional teaching resources by integrating disciplinary achievements with clinical cases and implements a hybrid teaching approach combining virtual simulation and problem-based learning(PBL)through the“three stages+four models+three reflections”framework.Dual-qualification teachers employ various teaching methods,create a“six-in-one”model for ideological and political education,and conduct formative assessments based on the principles of diversified objectives and process emphasis.The hybrid teaching reform addresses issues such as fragmented knowledge,insufficient class hours,weak animal disease diagnostic abilities among students,limited application and expansion of knowledge points,and students’lack of proactive critical thinking skills.The application of hybrid teaching has shown significant advantages and effectiveness,providing a reference for teaching reform in similar microbiology courses. 展开更多
关键词 Veterinary Microbiology hybrid teaching Virtual simulation Problem-based learning Teaching reform
下载PDF
ON HYBRID POSITION/FORCE COORDINATED LEARNING CONTROL OF MULTIPLE MANIPULATORS
16
作者 王从庆 尹朝万 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1999年第2期114-119,共6页
In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on obje... In this paper, coordinated control of multiple robot manipulators holding a rigid object is discussed. In consideration of inaccuracy of the dynamic model of a multiple manipulator system, the error equations on object position and internal force are derived. Then a hybrid position/force coordinated learning control scheme is presented and its convergence is proved. The scheme can improve the system performance by modifying the control input of the system after each iterative learning. Simulation results of two planar robot manipulators holding an object show the effectiveness of this control scheme. 展开更多
关键词 multiple manipulators learning control hybrid control coordinated control
下载PDF
Enhancing Deep Learning Soil Moisture Forecasting Models by Integrating Physics-based Models 被引量:1
17
作者 Lu LI Yongjiu DAI +5 位作者 Zhongwang WEI Wei SHANGGUAN Nan WEI Yonggen ZHANG Qingliang LI Xian-Xiang LI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1326-1341,共16页
Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient... Accurate soil moisture(SM)prediction is critical for understanding hydrological processes.Physics-based(PB)models exhibit large uncertainties in SM predictions arising from uncertain parameterizations and insufficient representation of land-surface processes.In addition to PB models,deep learning(DL)models have been widely used in SM predictions recently.However,few pure DL models have notably high success rates due to lacking physical information.Thus,we developed hybrid models to effectively integrate the outputs of PB models into DL models to improve SM predictions.To this end,we first developed a hybrid model based on the attention mechanism to take advantage of PB models at each forecast time scale(attention model).We further built an ensemble model that combined the advantages of different hybrid schemes(ensemble model).We utilized SM forecasts from the Global Forecast System to enhance the convolutional long short-term memory(ConvLSTM)model for 1–16 days of SM predictions.The performances of the proposed hybrid models were investigated and compared with two existing hybrid models.The results showed that the attention model could leverage benefits of PB models and achieved the best predictability of drought events among the different hybrid models.Moreover,the ensemble model performed best among all hybrid models at all forecast time scales and different soil conditions.It is highlighted that the ensemble model outperformed the pure DL model over 79.5%of in situ stations for 16-day predictions.These findings suggest that our proposed hybrid models can adequately exploit the benefits of PB model outputs to aid DL models in making SM predictions. 展开更多
关键词 soil moisture forecasting hybrid model deep learning ConvLSTM attention mechanism
下载PDF
Chinese micro-blog sentiment classification through a novel hybrid learning model 被引量:2
18
作者 LI Fang-fang WANG Huan-ting +3 位作者 ZHAO Rong-chang LIU Xi-yao WANG Yan-zhen ZOU Bei-ji 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2322-2330,共9页
With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are d... With the rising and spreading of micro-blog, the sentiment classification of short texts has become a research hotspot. Some methods have been developed in the past decade. However, since the Chinese and English are different in language syntax, semantics and pragmatics, sentiment classification methods that are effective for English twitter may fail on Chinese micro-blog. In addition, the colloquialism and conciseness of short Chinese texts introduces additional challenges to sentiment classification. In this work, a novel hybrid learning model was proposed for sentiment classification of Chinese micro-blogs, which included two stages. In the first stage, emotional scores were calculated over the whole dataset by utilizing an improved Chinese-oriented sentiment dictionary classification method. Data with extremely high or low scores were directly labeled. In the second stage, the remaining data were labeled by using an integrated classification method based on sentiment dictionary, support vector machine(SVM) and k-nearest neighbor(KNN). An improved feature selection method was adopted to enhance the discriminative power of the selected features. The two-stage hybrid framework made the proposed method effective for sentiment classification of Chinese micro-blogs. Experiments on the COAE2014(Chinese Opinion Analysis Evaluation 2014) dataset show that the proposed method outperforms other schemes. 展开更多
关键词 CHINESE micro-blog SHORT TEXT hybrid learning SENTIMENT classification
下载PDF
Iterative Learning Fault Diagnosis Algorithm for Non-uniform Sampling Hybrid System 被引量:2
19
作者 Hongfeng Tao Dapeng Chen Huizhong Yang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第3期534-542,共9页
For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on sys... For a class of non-uniform output sampling hybrid system with actuator faults and bounded disturbances,an iterative learning fault diagnosis algorithm is proposed.Firstly,in order to measure the impact of fault on system between every consecutive output sampling instants,the actual fault function is transformed to obtain an equivalent fault model by using the integral mean value theorem,then the non-uniform sampling hybrid system is converted to continuous systems with timevarying delay based on the output delay method.Afterwards,an observer-based fault diagnosis filter with virtual fault is designed to estimate the equivalent fault,and the iterative learning regulation algorithm is chosen to update the virtual fault repeatedly to make it approximate the actual equivalent fault after some iterative learning trials,so the algorithm can detect and estimate the system faults adaptively.Simulation results of an electro-mechanical control system model with different types of faults illustrate the feasibility and effectiveness of this algorithm. 展开更多
关键词 Equivalent fault model fault diagnosis iterative learning algorithm non-uniform sampling hybrid system virtual fault
下载PDF
Multi-Task Deep Learning Based Hybrid Precoding for mmWave Massive MIMO System 被引量:3
20
作者 Zhongjie Li Wei Gao +1 位作者 Min Zhang Jiyuan Xiong 《China Communications》 SCIE CSCD 2021年第10期96-106,共11页
Due to the different signal-to-noise ratio(SNR)of each subchannel,the bit error rate(BER)of hybrid precoding based on singular value decomposition(SVD)decreases.In this paper,we propose a multi-task learning based pre... Due to the different signal-to-noise ratio(SNR)of each subchannel,the bit error rate(BER)of hybrid precoding based on singular value decomposition(SVD)decreases.In this paper,we propose a multi-task learning based precoding network(PN)model to solve the BER loss problem caused by SVD based hybrid precoding under imperfect channel state information(CSI).Specifically,we firstly generate a dataset including imcomplete CSI input channel matrix and corresponding output labels to train the PN model.The output labels are designed based on uniform channel decomposition(UCD)which decomposes the channel into multiple subchannels with same gain,while the vertical-bell layered space-time structure(V-BLAST)signal processing technology is combined to eliminate the inner interference of the subchannels.Then,the PN model is trained to design the analog and digital precoding/combining matrix simultaneous.Simulation results show that the proposed scheme has only negligible gap in spectrum efficiency compared with the fully digital precoding,while achieves better BER performance than SVD based hybrid precoding. 展开更多
关键词 millimeter wave massive MIMO hybrid precoding uniform channel decomposition multitask learning
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部