In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance ...In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.展开更多
We experimentally detect high-refractive-index media (n > 1.5) using a surface plasmon resonance (SPR) sensor with a diffraction grating. While SPR sensors are generally based on the attenuated total reflection met...We experimentally detect high-refractive-index media (n > 1.5) using a surface plasmon resonance (SPR) sensor with a diffraction grating. While SPR sensors are generally based on the attenuated total reflection method using metal films, here, we focus on a method using a diffraction grating, which can detect relatively higher refractive-index media and is suitable for device miniaturization. In this study, we used the rigorous coupled-wave analysis method to simulate the dependence of the reflectance on an incident angle for media with refractive index values up to 1.700. In the experiment, a medium (n = 1.660 - 1.700) was successfully detected using this grating. Under the conditions of the grating (period: 600 nm, Au thickness: 40 nm) using a red laser (λ: 635 nm), a sharp decline in the reflectance and a rise in the transmittance at certain angles were confirmed, demonstrating the extraordinary transmission enabled by SPR. Because excitation angles changed with changes in the refractive index, we concluded that this method can be applied to sensors that detect high-refractive-index media.展开更多
A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation be...A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation between the resonant wavelengths of the LPFG and MMFC since the resonant wavelengths of the LPFG and MMFC will shift in opposite directions when the surrounding RI changes. Experimental results show that the sensor possesses an enhanced sensitivity of 526.92nm/RIU in the RI range of 1.387-1.394 RIU. The response to the temperature is also discussed.展开更多
Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband...Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved.展开更多
This paper, based on the Kavaya-Suni format, discusses the signal-to-noise ratio equation of the diffraction-limited coherent CO 2 lidar in detail, which is applied to atmospheric turbulence. The cumulative SNR and r...This paper, based on the Kavaya-Suni format, discusses the signal-to-noise ratio equation of the diffraction-limited coherent CO 2 lidar in detail, which is applied to atmospheric turbulence. The cumulative SNR and relative SNR, which are all affected by the nonlinear effects of the diffraction-limited Gaussian beam, atmospheric molecule and atmospheric turbulence, are simulated by microcomputer. Six instructions for the optimal design of IR CO 2 Coherent Lidar System, are provided.展开更多
A numerical model based on the mild-slope equation of water wave propagation over complicated bathymetry,taking into account the combined effects of refraction,diffraction and dissipation due to wavebreaking is presen...A numerical model based on the mild-slope equation of water wave propagation over complicated bathymetry,taking into account the combined effects of refraction,diffraction and dissipation due to wavebreaking is presented.Wave breaking is simulated by modifying the wave height probability density func-tion and the wave energy dissipation mechanism is parameterized according to that of the hydraulic jumpformulation.Solutions of the wave height,phase function,and the wave direction at every grid point areobtained by finite difference approximation of the governing equations,using Gauss-Seidel Iterative Method(GSIM)row by row.Its computational convenience allows it to be applied to large coast regions tostudy the wave transformation problem.Several case studies have been made and the results compare verywell with the experiment data and other model solutions.The capability and utility of the model forreal coast areas are illustrated by application to a shallow bay of northeast Australia.展开更多
This paper considers the effect of wave energy dissipation induced by sea-bottom friction on the computational results of water wave refraction and diffraction with the parabolic equation method. The presented results...This paper considers the effect of wave energy dissipation induced by sea-bottom friction on the computational results of water wave refraction and diffraction with the parabolic equation method. The presented results show that the friction factor formula adopted in this paper is of higher numerical accuracy than that introduced by Dalrymphe (1984), and it can be used to compute wave propagation over large open areas.展开更多
A numerical model for wave diffracrion-refraction in water of varying current and topography is proposed, and time-dependent wave mild-slope equation with a dissipation term and corresponding equivalent: governing equ...A numerical model for wave diffracrion-refraction in water of varying current and topography is proposed, and time-dependent wave mild-slope equation with a dissipation term and corresponding equivalent: governing equations are presented. Two different expressions of parabolic approximations for the case of the absence of current are also given and analyzed. The influence of current on the results of simulation of waves is discussed. Some examples show that the present model is better than others in simulating wave transformation in large water areas. And they also show that the influence of current should be taken into account, on numerical modeling of wave propagation in water of strong current and coastal areas, otherwise the modeling results will be largely distorted.展开更多
Two mathematical models for combined refraction-diffraction of regular and irregular waves on non-uniform current in water of slowly varying topography are presented in this paper. Model I is derived by wave theory an...Two mathematical models for combined refraction-diffraction of regular and irregular waves on non-uniform current in water of slowly varying topography are presented in this paper. Model I is derived by wave theory and variational principle separately. It has two kinds of expressions including the dissipation term. Model n is based on the energy conservation equation with energy flux through the wave crest lines in orthogonal curvilinear coordinates and the wave kinematic conservation equation. The analysis and comparison and special cases of these two models are also given.展开更多
A new numerical finite difference iteration method for refraction-diffraction of waves ia water of slowly varying current and topography is developed in this paper. And corresponding theoretical model including the di...A new numerical finite difference iteration method for refraction-diffraction of waves ia water of slowly varying current and topography is developed in this paper. And corresponding theoretical model including the dissipation term is briefly described, together with some analysis and comparison of computational results of the model with measurements in a hydraulic scale model (Berkhoff et al., 1982). An example of practical use of the method is given, showing that the present model is useful to engineering practice.展开更多
It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In t...It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.展开更多
After modifying the basic computation model made by Panchang (1988), the error vector propagation (EVP) method has been adopted to compute the combined effects of water wave refraction and diffraction in the presence ...After modifying the basic computation model made by Panchang (1988), the error vector propagation (EVP) method has been adopted to compute the combined effects of water wave refraction and diffraction in the presence of reflection boundary. The results show that the present method is successful in restraining the noise in Panchang's solution. Compared to other numerical methods for the mild-slope wave equation, EVP method can both consider the influence of reflection and save computer memory and computing time.展开更多
-Combined refraction and diffraction models in the form of linear parabolic approximation are derived through smallparameter method. More strictly theoretical basis and more accuracy in the models than Lozano's (1...-Combined refraction and diffraction models in the form of linear parabolic approximation are derived through smallparameter method. More strictly theoretical basis and more accuracy in the models than Lozano's (1980) are obtained. Some theoretical defects in Liu's model (1985) with consideration of current are not only found but also eliminated. More strict and accurate models are, therefore, presented in this paper.The calculation results and analysis in applying the models to actual wave field with consideration of bottom friction will be given in the following paper.展开更多
-Wave refraction-diffraction due to a large ocean structure and topography in the presence of a 'current are studied numerically. The mathematical model is the mild-slope equation developed by Kirby (1984). This e...-Wave refraction-diffraction due to a large ocean structure and topography in the presence of a 'current are studied numerically. The mathematical model is the mild-slope equation developed by Kirby (1984). This equation is solved using a finite and boundary element method. The physical domain is devid-ed into two regions: a slowly varying topography region and a constant water depth region. For waves propagating in the constant water depth region, without current interfering, the mild- slope equation is then reduced to the Helmholtz equation which is solved by boundary element method. In varying topography region, this equation will be solved by finite element method. Conservation of mass and energy flux of the fluid between these two regions is required for composition of these two numerical methods. The numerical scheme proposed here is capable of dealing with water wave problems of different water depths with the main characters of these two methods.展开更多
To solve problems concerning wave elements and wave propagation, an effective way is the wave energy balance equation, which is widely applied in oceanography and ocean dynamics for its simple computation. The present...To solve problems concerning wave elements and wave propagation, an effective way is the wave energy balance equation, which is widely applied in oceanography and ocean dynamics for its simple computation. The present papaer advances wave energy balance equations considering lateral energy transmission and energy loss as the governing equation for the study of wave refraction-diffraction. For the mathematical model, numerical simulation is made by means of difference method, and the result is verified with two examples.展开更多
The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensi...The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (150 fs) Ti:sapphire laser (λp=790 nm).The refractive index modifications with diameters ranging from 400 nm to 3 μm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 2×1013 W/cm2.The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.展开更多
基金the financial funding of the Guangdong Province Applied Science and Technology R&D Special Fund Project:Key Technologies for Industrialization of Sulfur-Resistant and High Refractive-Index LED Packaging Silicone Materials(2016B090930010).
文摘In this article,a series of high refractive indices(1.50-1.53)thiol phenyl polysiloxane(TPS)were synthesized via hydrolytic sol-gel reaction.The Fourier transform infrared spectra(FT-IR)and nuclear magnetic resonance spectra(NMR)results showed that TPS conformed to the predicted structures.Natural terpene linalool was exploited as photocrosslinker to fabricate UV-curing linalool-polysiloxane hybrid films(LPH)with TPS via photoinitiated thiol-ene reaction.LPH rapidly cured under UV irradiation at the intensity of 80 mW/cm^(2) in 30 s,exhibiting good UV-curing properties.The optical transmittance of LPH in the wavelength of 300-800 nm was over 90%,exhibiting good optical transparency.The water contact angle and water vapor permeability results showed that the introduction of phenyl groups enhance the hydrophobicity and water vapor barrier properties of LPH.The results indicated the potential of LPHs in the applications of optical functional coatings.
文摘We experimentally detect high-refractive-index media (n > 1.5) using a surface plasmon resonance (SPR) sensor with a diffraction grating. While SPR sensors are generally based on the attenuated total reflection method using metal films, here, we focus on a method using a diffraction grating, which can detect relatively higher refractive-index media and is suitable for device miniaturization. In this study, we used the rigorous coupled-wave analysis method to simulate the dependence of the reflectance on an incident angle for media with refractive index values up to 1.700. In the experiment, a medium (n = 1.660 - 1.700) was successfully detected using this grating. Under the conditions of the grating (period: 600 nm, Au thickness: 40 nm) using a red laser (λ: 635 nm), a sharp decline in the reflectance and a rise in the transmittance at certain angles were confirmed, demonstrating the extraordinary transmission enabled by SPR. Because excitation angles changed with changes in the refractive index, we concluded that this method can be applied to sensors that detect high-refractive-index media.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61327012 and 61505160the Natural Science Foundation of Shaanxi Province under Grant No 2016JQ6021the Shaanxi Key Laboratory of Optical Information Technology under Grant No OIT201601
文摘A refractive index (RI) sensor based on hybrid long-period fiber grating (LPFG) with multimode fiber core (MMFC) is proposed and demonstrated. The surrounding RI can be determined by monitoring the separation between the resonant wavelengths of the LPFG and MMFC since the resonant wavelengths of the LPFG and MMFC will shift in opposite directions when the surrounding RI changes. Experimental results show that the sensor possesses an enhanced sensitivity of 526.92nm/RIU in the RI range of 1.387-1.394 RIU. The response to the temperature is also discussed.
文摘Reengineering the refractive index profile of inhomogeneous coatings is a troublesome task. Multiplicity of solutions may significantly reduced by providing additional information. For this reason an in-situ broadband monitoring system was developed to measure the transmittance of the growing film directly at the rotating substrate. For characterization of these coatings, a new model was developed, which significantly reduces the number of parameters. The refractive index profile may be described by a proper number of equally spaced volume fraction values using the Bruggeman effective media approach. A good initial approximation of the refractive index profile can be generated based on deposition rates for both materials recorded with quartz crystal monitor during manufacturing. During the optimization process, a second order minimization algorithm was used to vary the refractive index profile of the whole coating and film thickness of the intermediate stages. Finally, a significantly improved accuracy of the modelled transmittance was achieved.
文摘This paper, based on the Kavaya-Suni format, discusses the signal-to-noise ratio equation of the diffraction-limited coherent CO 2 lidar in detail, which is applied to atmospheric turbulence. The cumulative SNR and relative SNR, which are all affected by the nonlinear effects of the diffraction-limited Gaussian beam, atmospheric molecule and atmospheric turbulence, are simulated by microcomputer. Six instructions for the optimal design of IR CO 2 Coherent Lidar System, are provided.
文摘A numerical model based on the mild-slope equation of water wave propagation over complicated bathymetry,taking into account the combined effects of refraction,diffraction and dissipation due to wavebreaking is presented.Wave breaking is simulated by modifying the wave height probability density func-tion and the wave energy dissipation mechanism is parameterized according to that of the hydraulic jumpformulation.Solutions of the wave height,phase function,and the wave direction at every grid point areobtained by finite difference approximation of the governing equations,using Gauss-Seidel Iterative Method(GSIM)row by row.Its computational convenience allows it to be applied to large coast regions tostudy the wave transformation problem.Several case studies have been made and the results compare verywell with the experiment data and other model solutions.The capability and utility of the model forreal coast areas are illustrated by application to a shallow bay of northeast Australia.
文摘This paper considers the effect of wave energy dissipation induced by sea-bottom friction on the computational results of water wave refraction and diffraction with the parabolic equation method. The presented results show that the friction factor formula adopted in this paper is of higher numerical accuracy than that introduced by Dalrymphe (1984), and it can be used to compute wave propagation over large open areas.
基金Science Foundation of National Education Committee of China,(Grant No.9429405)
文摘A numerical model for wave diffracrion-refraction in water of varying current and topography is proposed, and time-dependent wave mild-slope equation with a dissipation term and corresponding equivalent: governing equations are presented. Two different expressions of parabolic approximations for the case of the absence of current are also given and analyzed. The influence of current on the results of simulation of waves is discussed. Some examples show that the present model is better than others in simulating wave transformation in large water areas. And they also show that the influence of current should be taken into account, on numerical modeling of wave propagation in water of strong current and coastal areas, otherwise the modeling results will be largely distorted.
基金This work was financially supported by the Science Foundation of National Education Committee of China
文摘Two mathematical models for combined refraction-diffraction of regular and irregular waves on non-uniform current in water of slowly varying topography are presented in this paper. Model I is derived by wave theory and variational principle separately. It has two kinds of expressions including the dissipation term. Model n is based on the energy conservation equation with energy flux through the wave crest lines in orthogonal curvilinear coordinates and the wave kinematic conservation equation. The analysis and comparison and special cases of these two models are also given.
基金Science Foundation of National Education Committee of China
文摘A new numerical finite difference iteration method for refraction-diffraction of waves ia water of slowly varying current and topography is developed in this paper. And corresponding theoretical model including the dissipation term is briefly described, together with some analysis and comparison of computational results of the model with measurements in a hydraulic scale model (Berkhoff et al., 1982). An example of practical use of the method is given, showing that the present model is useful to engineering practice.
文摘It was found out that the change of refractive index of ambient gas can lead to obvious change of the color of Morpho butterfly's wing. Such phenomenon has been employed as a sensing principle for detecting gas. In the present study, Rigorous Coupled-Wave Analysis (RCWA) was described briefly, and the partial derivative of optical reflection efficiency with respect to the refractive index of ambient gas, i.e., sensitivity of the sensor, was derived based on RCWA. A bioinspired grating model was constructed by mimicking the nanostructure on the ground scale of Morpho didius butterfly's wing. The analytical sensitivity was verified and the effect of the grating shape on the reflection spectra and its sensitivity were discussed. The results show that by tuning shape parameters of the grating, we can obtain desired reflection spectra and sensitivity, which can be applied to the design of the bioinspired refractive index based gas sensor.
文摘After modifying the basic computation model made by Panchang (1988), the error vector propagation (EVP) method has been adopted to compute the combined effects of water wave refraction and diffraction in the presence of reflection boundary. The results show that the present method is successful in restraining the noise in Panchang's solution. Compared to other numerical methods for the mild-slope wave equation, EVP method can both consider the influence of reflection and save computer memory and computing time.
基金Project supported by the State Natural Science Fund
文摘-Combined refraction and diffraction models in the form of linear parabolic approximation are derived through smallparameter method. More strictly theoretical basis and more accuracy in the models than Lozano's (1980) are obtained. Some theoretical defects in Liu's model (1985) with consideration of current are not only found but also eliminated. More strict and accurate models are, therefore, presented in this paper.The calculation results and analysis in applying the models to actual wave field with consideration of bottom friction will be given in the following paper.
文摘-Wave refraction-diffraction due to a large ocean structure and topography in the presence of a 'current are studied numerically. The mathematical model is the mild-slope equation developed by Kirby (1984). This equation is solved using a finite and boundary element method. The physical domain is devid-ed into two regions: a slowly varying topography region and a constant water depth region. For waves propagating in the constant water depth region, without current interfering, the mild- slope equation is then reduced to the Helmholtz equation which is solved by boundary element method. In varying topography region, this equation will be solved by finite element method. Conservation of mass and energy flux of the fluid between these two regions is required for composition of these two numerical methods. The numerical scheme proposed here is capable of dealing with water wave problems of different water depths with the main characters of these two methods.
文摘To solve problems concerning wave elements and wave propagation, an effective way is the wave energy balance equation, which is widely applied in oceanography and ocean dynamics for its simple computation. The present papaer advances wave energy balance equations considering lateral energy transmission and energy loss as the governing equation for the study of wave refraction-diffraction. For the mathematical model, numerical simulation is made by means of difference method, and the result is verified with two examples.
基金Project(2010-0008-277)supported by NCRC(National Core Research Center)Program through the National Research Foundation of Korea funded by the Ministry of Education,Science and Technology
文摘The fabrication of an internal diffraction grating with photoinduced refractive index modification in planar hybrid germanium-silica plates was demonstrated using low-density plasma formation excited by a high-intensity femtosecond (150 fs) Ti:sapphire laser (λp=790 nm).The refractive index modifications with diameters ranging from 400 nm to 3 μm were photoinduced after plasma formation occurred upon irradiation with peak intensities of more than 2×1013 W/cm2.The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred.