Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage ca...Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.展开更多
Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modul...Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.展开更多
Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system e...Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs.This paper investigates renewable and clean storage systems,specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen,both of which are highly efficient and promising for future energy production and storage.The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating hydropower and hydrogen storage plants.Results indicate that these hybrid systems can store electricity efficiently and cost-effectively,with production costs ranging from 0.126 to 0.3$/kWh for renewablehydropower systems and 0.118 to 0.42$/kWh for renewable-hydrogen systems,with expected cost reductions over the next decade due to technological advancements and increased market adoption.The novelty of this study lies in its comprehensive comparison of hybrid renewable systems integrating hydropower and hydrogen storage,providing detailed cost analysis and future projections.It identifies key parameters influencing the cost and efficiency of these systems,offering insights into optimizing storage solutions for renewable energy.Moreover,this research underscores the potential of hybrid systems to reduce dependency on fossil fuels,particularly during peak demand periods,and emphasizes the importance of seasonal and geographic considerations in selecting energy sources.The study highlights the importance of policy support and investment in hybrid renewable systems and calls for further research into optimizing these systems for different seasonal and geographic conditions.Overall,the integration of renewable energy sources with hydropower and hydrogen storage offers a promising pathway to a sustainable,economical,and resilient energy future.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing confi...To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.展开更多
[Objective] The aim of this study was to investigate the storage durability of a new line of endurable storage hybrid rice Chucangyou No.1 selected by endurable storage genes of Yunhui 290.[Method] Agronomic character...[Objective] The aim of this study was to investigate the storage durability of a new line of endurable storage hybrid rice Chucangyou No.1 selected by endurable storage genes of Yunhui 290.[Method] Agronomic characters of the new line and the control II you 838 and Shanyou 63 were comparatively studied,and storage durability of the new line and indica,japonica or hybrid rice were also comparatively analyzed by the accelerated ageing test.[Result] Agronomic characters of the new line were excellent,and germination rate in the artificial accelerated ageing test was significantly higher than those in other materials.[Conclusion] Chucangyou No.1 has the better storage durability,which can be used in large scale of extention.展开更多
As a new generation of Zn-ion storage systems,Zn-ion hybrid supercapacitors(ZHSCs)garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors.ZHSCs have excell...As a new generation of Zn-ion storage systems,Zn-ion hybrid supercapacitors(ZHSCs)garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors.ZHSCs have excellent integration of high energy density and power density,which seamlessly bridges the gap between batteries and supercapacitors,becoming one of the most viable future options for large-scale equipment and portable electronic devices.However,the currently reported two configurations of ZHSCs and corresponding energy storage mechanisms still lack systematic analyses.Herein,this review will be prudently organized from the perspectives of design strategies,electrode configurations,energy storage mechanisms,recent advances in electrode materials,electrolyte behaviors and further applications(micro or flexible devices)of ZHSCs.The synthesis processes and electrochemical properties of well-designed Zn anodes,capacitor-type electrodes and novel Zn-ion battery-type cathodes are comprehensively discussed.Finally,a brief summary and outlook for the further development of ZHSCs are presented as well.This review will provide timely access for researchers to the recent works regarding ZHSCs.展开更多
The development of potential transition-metal carbide/nitride heterojunctions is hindered by overall understanding and precise modulation for heterointerface effects.Herein,we demonstrate that Mo_(2)C/Mo_(2)N heteroju...The development of potential transition-metal carbide/nitride heterojunctions is hindered by overall understanding and precise modulation for heterointerface effects.Herein,we demonstrate that Mo_(2)C/Mo_(2)N heterojunction with the precisely regulated high-quality interface can achieve marvelous rate performance and energy output via enlarging the interface-effect range and maximizing "accelerated charge" amount The heterointerface mechanism improving properties is synergistically revealed from kinetics and thermodynamics perspectives.Kinetics analysis confirms that the self-built electric field affords a robust force to drive rapid interface electrons/ions migration.The small adsorption energy,high density of states and quite low diffusion barrier thermodynamically enhance the electrochemical reaction dynamics on heterointerface.Consequently,the almost optimal performance of ultrahigh capacitance retention(85.6% even at 10 A g^(-1)) and pronounced energy output(96.4 Wh kg^(-1))in hybridsupercapacitors than other Mo_(2)C/Mo_(2)N-based materials is presented.This work gives new insight into the energy storage mechanism of heterojunction and guides the design of advanced electrodes.展开更多
The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,...The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.展开更多
Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,lead...Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy.展开更多
Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated sto...Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs.展开更多
Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the develop...Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the development of high-capacity anion-storing materials,which can be paired with fast charg-ing capacitive electrodes,lags behind cation-storing counterparts.Herein,we demonstrate the surface faradaic OH-storage mechanism of anion storing perovskite oxide composites and their application in high-performance dual ion HsCs.The oxygen vacancy and nanoparticle size of the reduced LaMnO_(3)(r-LaMnO_(3))were controlled,while r-LaMnO_(3) was chemically coupled with ozonated carbon nanotubes(oCNTs)for the improved anion storing capacity and cycle performance.As taken by in-situ and ex-situ spectroscopic and computational analyses,OH-ions are inserted into the oxygen vacancies coordi-nating with octahedral Mn with the increase in the oxidation state of Mn during the charging process or vice versa.Configuring OH-storing r-LaMnO_(3)/oCNT composite with Na*storing MXene,the as-fabricated aqueous dual ion HSCs achieved the cycle performance of 73.3%over 10,000 cycles,delivering the max-imum energy and power densities of 47.5 w h kg^(-1) and 8 kw kg^(-1),respectively,far exceeding those of previously reported aqueous anion and dual ion storage cells.This research establishes a foundation for the unique anion storage mechanism of the defect engineered perovskite oxides and the advancement of dual ion hybrid energy storage devices with high energy and power densities.展开更多
The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode...The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.展开更多
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba...In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.展开更多
In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of ...In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of our approach is to invoke parallel hybrid storage system’s parallelism and prefetch data among multiple storage levels (e.g. solid state disks, and hard disk drives) in parallel with the application’s on-demand I/O reading requests. In this study, we show that a predictive prefetching across multiple storage levels is an efficient technique for placing near future needed data blocks in the uppermost levels near the application. Our PPHSS approach extends previous ideas of predictive prefetching in two ways: (1) our approach reduces applications’ execution elapsed time by keeping data blocks that are predicted to be accessed in the near future cached in the uppermost level;(2) we propose a parallel data fetching scheme in which multiple fetching mechanisms (i.e. predictive prefetching and application’s on-demand data requests) can work in parallel;where the first one fetches data blocks among the different levels of the hybrid storage systems (i.e. low-level (slow) to high-level (fast) storage devices) and the other one fetches the data from the storage system to the application. Our PPHSS strategy integrated with the predictive prefetching mechanism significantly reduces overall I/O access time in a hybrid storage system. Finally, we developed a simulator to evaluate the performance of the proposed predictive prefetching scheme in the context of hybrid storage systems. Our results show that our PPHSS can improve system performance by 4% across real-world I/O traces without the need of using large size caches.展开更多
Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized wit...Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.展开更多
Regarding the problem of the short driving distance of pure electric vehicles,a battery,super-capacitor,and DC/DC converter are combined to form a hybrid energy storage system(HESS).A fuzzy adaptive filtering-based en...Regarding the problem of the short driving distance of pure electric vehicles,a battery,super-capacitor,and DC/DC converter are combined to form a hybrid energy storage system(HESS).A fuzzy adaptive filtering-based energy management strategy(FAFBEMS)is proposed to allocate the required power of the vehicle.Firstly,the state of charge(SOC)of the super-capacitor is limited according to the driving/braking mode of the vehicle to ensure that it is in a suitable working state,and fuzzy rules are designed to adaptively adjust the filtering time constant,to realize reasonable power allocation.Then,the positive and negative power are determined,and the average power of driving/braking is calculated so as to limit the power amplitude to protect the battery.To verify the proposed FAFBEMS strategy for HESS,simulations are performed under the UDDS(Urban Dynamometer Driving Schedule)driving cycle.The results show that the FAFBEMS strategy can effectively reduce the current amplitude of the battery,and the final SOC of the battery and super-capacitor is optimized to varying degrees.The energy consumption is 7.8%less than that of the rule-based energy management strategy,10.9%less than that of the fuzzy control energy management strategy,and 13.1%less than that of the filtering-based energy management strategy,which verifies the effectiveness of the FAFBEMS strategy.展开更多
In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the...In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the efficient power supply without perfect stable control. Micro the early stage of network development related to micro network operation concepts are modeled on the control of large power system. Our proposed approach is proven to be effective and feasible through the numerical simulation and theoretical analysis which will be meaningful.展开更多
The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window.However,the ionic conductivity a...The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window.However,the ionic conductivity and mechanical strength of the Na-ion conducting polymeric gel electrolytes are limited by below 20 mS cm−1 and 2.2 MPa.Herein,we demonstrate Na-ion conducting and flexible polymeric hydrogel electrolytes of the chemically coupled poly(diallyldimethylammonium chloride)-dextrin-N,N′-methylene-bisacrylamide film immersed in NaClO_(4) solution(ex-DDA-Dex+NaClO_(4))for flexible sodium-ion hybrid capacitors(f-NIHC).In particular,the anion exchange reaction and synergistic interaction of ex-DDA-Dex with the optimum ClO_(4)−enable to greatly improve the ionic conductivity up to 27.63 mS cm−1 at 25◦C and electrochemical stability window up to 2.6 V,whereas the double networking structure leads to achieve both the mechanical strength(7.48 MPa)and softness of hydrogel electrolytes.Therefore,the f-NIHCs with the ex-DDA-Dex+NaClO_(4) achieved high specific and high-rate capacities of 192.04 F g^(−1)at 500 mA g^(−1)and 116.06 F g^(−1)at 10000 mA g^(−1),respectively,delivering a large energy density of 120.03Wh kg^(−1)at 906Wkg^(−1)and long cyclability of 70%over 500 cycles as well as demonstrating functional operation under mechanical stresses.展开更多
For the efficient use of solar and fuels and to improve the supply-demand matching performance in combined heat and power(CHP)systems,this paper proposes a hybrid solar/methanol energy system integrating solar/exhaust...For the efficient use of solar and fuels and to improve the supply-demand matching performance in combined heat and power(CHP)systems,this paper proposes a hybrid solar/methanol energy system integrating solar/exhaust thermochemical and thermal energy storage.The proposed system includes parabolic trough solar collectors(PTSC),a thermochemical reactor,an internal combustion engine(ICE),and hybrid storage of thermal and chemical energy,which uses solar energy and methanol fuel as input and outputs power and heat.With methanol thermochemical decomposition reaction,mid-and-low temperature solar heat and exhaust heat are upgraded to chemical energy for efficient power generation.The thermal energy storage(TES)stores surplus thermal energy,acting as a backup source to produce heat without emitting CO_(2).Due to the energy storage,time-varying solar energy can be used steadily and efficiently;considerable supply-demand mismatches can be avoided,and the operational flexibility is improved.Under the design condition,the overall energy efficiency,exergy efficiency,and net solar-to-electric efficiency achieve 72.09%,37.65%,and 24.63%,respectively.The fuel saving rate(FSR)and the CO_(2) emission reduction(ER_(CO_(2)))achieve 32.97%and 25.33%,respectively.The research findings provide a promising approach for the efficient and flexible use of solar energy and fuels for combined heat and power.展开更多
基金financially supported by the project of the National Natural Science Foundation of China (Grant Nos.51972270,52322203)the Key Research and Development Program of Shaanxi Province (Grant NO.2024GH-ZDXM-21)the Fundamental Research Funds for the Central Universities (Grant Nos.G2022KY0607,23GH0202277).
文摘Exploiting high-performance yet low-cost hard carbon anodes is crucial to advancing the state-of-the-art sodium-ion batteries.However,the achievement of superior initial Coulombic efficiency(ICE)and high Na-storage capacity via low-temperature carbonization remains challenging due to the presence of tremendous defects with few closed pores.Here,a facile hybrid carbon framework design is proposed from the polystyrene precursor bearing distinct molecular bridges at a low pyrolysis temperature of 800℃ via in situ fusion and embedding strategy.This is realized by integrating triazine-and carbonylcrosslinked polystyrene nanospheres during carbonization.The triazine crosslinking allows in situ fusion of spheres into layered carbon with low defects and abundant closed pores,which serves as a matrix for embedding the well-retained carbon spheres with nanopores/defects derived from carbonyl crosslinking.Therefore,the hybrid hard carbon with intimate interface showcases synergistic Na ions storage behavior,showing an ICE of 70.2%,a high capacity of 279.3 mAh g^(-1),and long-term 500 cycles,superior to carbons from the respective precursor and other reported carbons fabricated under the low carbonization temperature.The present protocol opens new avenues toward low-cost hard carbon anode materials for high-performance sodiumion batteries.
基金financially supported by the National Natural Science Foundation of China (No.52172218)。
文摘Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs).However their energy storage mechanisms in zinc-based systems are still under debate.Herein,we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions.And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors.The zinc-ion capacitor with Mg^(2+)mixed solution delivers 82 mAh·g^(-1)capacity at 1 A·g^(-1) and maintains 91%of the original capacitance after 10000 cycling.It is superior to the other assembled zinc-ion devices in single-component electrolytes.The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.
文摘Renewable energy sources are essential formitigating the greenhouse effect and supplying energy to resource-scarce regions.However,their intermittent nature necessitates efficient storage solutions to enhance system efficiency and manage energy costs.This paper investigates renewable and clean storage systems,specifically examining the storage of electricity generated from renewable sources using hydropower plants and hydrogen,both of which are highly efficient and promising for future energy production and storage.The study utilizes extensive literature data to analyze the impact of various parameters on the cost per kWh of electricity production in hybrid renewable systems incorporating hydropower and hydrogen storage plants.Results indicate that these hybrid systems can store electricity efficiently and cost-effectively,with production costs ranging from 0.126 to 0.3$/kWh for renewablehydropower systems and 0.118 to 0.42$/kWh for renewable-hydrogen systems,with expected cost reductions over the next decade due to technological advancements and increased market adoption.The novelty of this study lies in its comprehensive comparison of hybrid renewable systems integrating hydropower and hydrogen storage,providing detailed cost analysis and future projections.It identifies key parameters influencing the cost and efficiency of these systems,offering insights into optimizing storage solutions for renewable energy.Moreover,this research underscores the potential of hybrid systems to reduce dependency on fossil fuels,particularly during peak demand periods,and emphasizes the importance of seasonal and geographic considerations in selecting energy sources.The study highlights the importance of policy support and investment in hybrid renewable systems and calls for further research into optimizing these systems for different seasonal and geographic conditions.Overall,the integration of renewable energy sources with hydropower and hydrogen storage offers a promising pathway to a sustainable,economical,and resilient energy future.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
基金supported by the NationalNatural Science Foundation of China Under Grant 61961017Key R&D Plan Projects in Hubei Province 2022BAA060.
文摘To reduce the comprehensive costs of the construction and operation of microgrids and to minimize the power fluctuations caused by randomness and intermittency in distributed generation,a double-layer optimizing configuration method of hybrid energy storage microgrid based on improved grey wolf optimization(IGWO)is proposed.Firstly,building a microgrid system containing a wind-solar power station and electric-hydrogen coupling hybrid energy storage system.Secondly,the minimum comprehensive cost of the construction and operation of the microgrid is taken as the outer objective function,and the minimum peak-to-valley of the microgrid’s daily output is taken as the inner objective function.By iterating through the outer and inner layers,the system improves operational stability while achieving economic configuration.Then,using the energy-self-smoothness of the microgrid as the evaluation index,a double-layer optimizing configuration method of the microgrid is constructed.Finally,to improve the disadvantages of grey wolf optimization(GWO),such as slow convergence in the later period and easy falling into local optima,by introducing the convergence factor nonlinear adjustment strategy and Cauchy mutation operator,an IGWO with excellent global performance is proposed.After testing with the typical test functions,the superiority of IGWO is verified.Next,using IGWO to solve the double-layer model.The case analysis shows that compared to GWO and particle swarm optimization(PSO),the IGWO reduced the comprehensive cost by 15.6%and 18.8%,respectively.Therefore,the proposed double-layer optimizationmethod of capacity configuration ofmicrogrid with wind-solar-hybrid energy storage based on IGWO could effectively improve the independence and stability of the microgrid and significantly reduce the comprehensive cost.
基金Support by National Key Technology R&D Program(2006BAD01A01-5)Science and Technological Fund of Anhui Province for Outstanding Youth(08040106802)~~
文摘[Objective] The aim of this study was to investigate the storage durability of a new line of endurable storage hybrid rice Chucangyou No.1 selected by endurable storage genes of Yunhui 290.[Method] Agronomic characters of the new line and the control II you 838 and Shanyou 63 were comparatively studied,and storage durability of the new line and indica,japonica or hybrid rice were also comparatively analyzed by the accelerated ageing test.[Result] Agronomic characters of the new line were excellent,and germination rate in the artificial accelerated ageing test was significantly higher than those in other materials.[Conclusion] Chucangyou No.1 has the better storage durability,which can be used in large scale of extention.
基金supported by National Natural Science Foundation(U1802254,U20A20168,61874065,51861145202)of China,the National Key R&D Program(2018YFC2001202)Zhejiang University of Technology’s Research Start-up Foundation(2021125010629)Xiangshun Geng thanks for the support from Shuimu Tsinghua Scholar Program.
文摘As a new generation of Zn-ion storage systems,Zn-ion hybrid supercapacitors(ZHSCs)garner tremendous interests recently from researchers due to the perfect integration of batteries and supercapacitors.ZHSCs have excellent integration of high energy density and power density,which seamlessly bridges the gap between batteries and supercapacitors,becoming one of the most viable future options for large-scale equipment and portable electronic devices.However,the currently reported two configurations of ZHSCs and corresponding energy storage mechanisms still lack systematic analyses.Herein,this review will be prudently organized from the perspectives of design strategies,electrode configurations,energy storage mechanisms,recent advances in electrode materials,electrolyte behaviors and further applications(micro or flexible devices)of ZHSCs.The synthesis processes and electrochemical properties of well-designed Zn anodes,capacitor-type electrodes and novel Zn-ion battery-type cathodes are comprehensively discussed.Finally,a brief summary and outlook for the further development of ZHSCs are presented as well.This review will provide timely access for researchers to the recent works regarding ZHSCs.
基金supported by the Beijing Natural Science Founding (2202050)the Beijing Institute of Technology scientific cooperation project (BITBLR2020010)+1 种基金the National Nature Science Foundation of China (21111120074)the National Nature Science Foundation of China (20806008)。
文摘The development of potential transition-metal carbide/nitride heterojunctions is hindered by overall understanding and precise modulation for heterointerface effects.Herein,we demonstrate that Mo_(2)C/Mo_(2)N heterojunction with the precisely regulated high-quality interface can achieve marvelous rate performance and energy output via enlarging the interface-effect range and maximizing "accelerated charge" amount The heterointerface mechanism improving properties is synergistically revealed from kinetics and thermodynamics perspectives.Kinetics analysis confirms that the self-built electric field affords a robust force to drive rapid interface electrons/ions migration.The small adsorption energy,high density of states and quite low diffusion barrier thermodynamically enhance the electrochemical reaction dynamics on heterointerface.Consequently,the almost optimal performance of ultrahigh capacitance retention(85.6% even at 10 A g^(-1)) and pronounced energy output(96.4 Wh kg^(-1))in hybridsupercapacitors than other Mo_(2)C/Mo_(2)N-based materials is presented.This work gives new insight into the energy storage mechanism of heterojunction and guides the design of advanced electrodes.
基金the National Natural Science Foundation of China(Grant Nos.21773291,61904118,and 22002102)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20190935 and BK20190947)+3 种基金the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant Nos.19KJA210005,19KJB510012,19KJB120005,and 19KJB430034)the Fund from the Suzhou Key Laboratory for Nanophotonic and Nanoelectronic Materials and Its Devices(Grant No.SZS201812)the Science Fund from the Jiangsu Key Laboratory for Environment Functional Materialsthe State Key Laboratory of Transducer Technology,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences.
文摘The era of information explosion is coming and information need to be continuously stored and randomly accessed over long-term periods,which constitute an insurmountable challenge for existing data centers.At present,computing devices use the von Neumann architecture with separate computing and memory units,which exposes the shortcomings of“memory bottleneck”.Nonvolatile memristor can realize data storage and in-memory computing at the same time and promises to overcome this bottleneck.Phase-change random access memory(PCRAM)is called one of the best solutions for next generation non-volatile memory.Due to its high speed,good data retention,high density,low power consumption,PCRAM has the broad commercial prospects in the in-memory computing application.In this review,the research progress of phase-change materials and device structures for PCRAM,as well as the most critical performances for a universal memory,such as speed,capacity,and power consumption,are reviewed.By comparing the advantages and disadvantages of phase-change optical disk and PCRAM,a new concept of optoelectronic hybrid storage based on phase-change material is proposed.Furthermore,its feasibility to replace existing memory technologies as a universal memory is also discussed as well.
基金funded by the Natural Science Foundation of Shaanxi Province,Grant No.2021GY-135the Scientific Research Project of Yan’an University,Grant No.YDQ2018-07.
文摘Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant No.2018D03the National Natural Science Foundation of China under Grant Nos.51608016 and 51421005。
文摘Variable curvature friction pendulum bearings(VCFPB)effectively reduce the dynamic response of storage tanks induced by earthquakes.Shaking table testing is used to assess the seismic performance of VCFPB isolated storage tanks.However,the vertical pressure and friction coefficient of the scaled VCFPB in the shaking table tests cannot match the equivalent values of these parameters in the prototype.To avoid this drawback,a real-time hybrid simulation(RTHS)test was developed.Using RTHS testing,a 1/8 scaled tank isolated by VCFPB was tested.The experimental results showed that the displacement dynamic magnification factor of VCFPB,peak reduction factors of the acceleration,shear force,and overturning moment at bottom of the tank,were negative exponential functions of the ratio of peak ground acceleration(PGA)and friction coefficient.The peak reduction factors of displacement,acceleration,force and overturning moment,which were obtained from the experimental results,are compared with those calculated by the Housner model.It can be concluded that the Housner model is applicable in estimation of the acceleration,shear force,and overturning moment of liquid storage tank,but not for the sliding displacement of VCFPBs.
基金supported by the National Research Foundation of Korea grant funded by the Korea government(MSIT)(NRF-2020R1A3B2079803)the computational time provided by KISTI(KSC-2023-CRE-0166).
文摘Dual ion storage hybrid supercapacitors(HsCs)are considered as a promising device to overcome the limited energy density of existing supercapacitors while preserving high power and long cyclability.However,the development of high-capacity anion-storing materials,which can be paired with fast charg-ing capacitive electrodes,lags behind cation-storing counterparts.Herein,we demonstrate the surface faradaic OH-storage mechanism of anion storing perovskite oxide composites and their application in high-performance dual ion HsCs.The oxygen vacancy and nanoparticle size of the reduced LaMnO_(3)(r-LaMnO_(3))were controlled,while r-LaMnO_(3) was chemically coupled with ozonated carbon nanotubes(oCNTs)for the improved anion storing capacity and cycle performance.As taken by in-situ and ex-situ spectroscopic and computational analyses,OH-ions are inserted into the oxygen vacancies coordi-nating with octahedral Mn with the increase in the oxidation state of Mn during the charging process or vice versa.Configuring OH-storing r-LaMnO_(3)/oCNT composite with Na*storing MXene,the as-fabricated aqueous dual ion HSCs achieved the cycle performance of 73.3%over 10,000 cycles,delivering the max-imum energy and power densities of 47.5 w h kg^(-1) and 8 kw kg^(-1),respectively,far exceeding those of previously reported aqueous anion and dual ion storage cells.This research establishes a foundation for the unique anion storage mechanism of the defect engineered perovskite oxides and the advancement of dual ion hybrid energy storage devices with high energy and power densities.
基金funded by the Project “Resource Characteristics of Main Watersheds and Key Issues in Development and Utilization of Hydroelectricity in South America and Africa”the National Science Foundation of China (U1766201)
文摘The nuclear power plant is suitable for base-load operation, while the pumped-storage unit mainly gives play to capacity benefit in the electric power system;hence, the integrated development and hybrid operation mode of the two can better meet the needs of the electric power system. This article first presents an analysis of the necessity and superiority of such mode, then explains its meaning and analyzes the working routes. Finally, it proposes the business modes as follows: low price pumping water electricity plus nuclear power in the near term;nuclear power shifted to pumped storage power participating in market competition in the middle term;and, in the long term, nuclear power shifted to pumped storage power as primary and serving as an electric power system when needed.
文摘In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.
文摘In this paper, we present a predictive prefetching mechanism that is based on probability graph approach to perform prefetching between different levels in a parallel hybrid storage system. The fundamental concept of our approach is to invoke parallel hybrid storage system’s parallelism and prefetch data among multiple storage levels (e.g. solid state disks, and hard disk drives) in parallel with the application’s on-demand I/O reading requests. In this study, we show that a predictive prefetching across multiple storage levels is an efficient technique for placing near future needed data blocks in the uppermost levels near the application. Our PPHSS approach extends previous ideas of predictive prefetching in two ways: (1) our approach reduces applications’ execution elapsed time by keeping data blocks that are predicted to be accessed in the near future cached in the uppermost level;(2) we propose a parallel data fetching scheme in which multiple fetching mechanisms (i.e. predictive prefetching and application’s on-demand data requests) can work in parallel;where the first one fetches data blocks among the different levels of the hybrid storage systems (i.e. low-level (slow) to high-level (fast) storage devices) and the other one fetches the data from the storage system to the application. Our PPHSS strategy integrated with the predictive prefetching mechanism significantly reduces overall I/O access time in a hybrid storage system. Finally, we developed a simulator to evaluate the performance of the proposed predictive prefetching scheme in the context of hybrid storage systems. Our results show that our PPHSS can improve system performance by 4% across real-world I/O traces without the need of using large size caches.
文摘Present-day power conversion and conditioning systems focus on transferring energy from a single type of power source into a single type of load or energy storage system (ESS). While these systems can be optimized within their specific topology (e.g. MPPT for solar applications and BMS for batteries), the topologies are not easily adapted to accept a wide range of power flow operating conditions. With a hybrid approach to energy storage and power flow, a system can be designed to operate at its most advantageous point, given the operating conditions. Based on the load demand, the system can select the optimal power source and ESS. This paper will investigate the feasibility of combining two types of power sources (main utility grid and photovoltaics (PV)) along with two types of ESS (ultra-capacitors and batteries). The simulation results will show the impact of a hybrid ESS on a grid-tied residential microgrid system performance under various operating scenarios.
基金supported by the National Natural Science Foundation of China(61673164)the Natural Science Foundation of Hunan Province(2020JJ6024)the Scientific Research Fund of Hunan Provincal Education Department(19K025).
文摘Regarding the problem of the short driving distance of pure electric vehicles,a battery,super-capacitor,and DC/DC converter are combined to form a hybrid energy storage system(HESS).A fuzzy adaptive filtering-based energy management strategy(FAFBEMS)is proposed to allocate the required power of the vehicle.Firstly,the state of charge(SOC)of the super-capacitor is limited according to the driving/braking mode of the vehicle to ensure that it is in a suitable working state,and fuzzy rules are designed to adaptively adjust the filtering time constant,to realize reasonable power allocation.Then,the positive and negative power are determined,and the average power of driving/braking is calculated so as to limit the power amplitude to protect the battery.To verify the proposed FAFBEMS strategy for HESS,simulations are performed under the UDDS(Urban Dynamometer Driving Schedule)driving cycle.The results show that the FAFBEMS strategy can effectively reduce the current amplitude of the battery,and the final SOC of the battery and super-capacitor is optimized to varying degrees.The energy consumption is 7.8%less than that of the rule-based energy management strategy,10.9%less than that of the fuzzy control energy management strategy,and 13.1%less than that of the filtering-based energy management strategy,which verifies the effectiveness of the FAFBEMS strategy.
文摘In this paper, we conduct research on the hybrid energy storage based photovoltaic piconets and the isolated net running comprehensive control system in the campus environment. Piconets flexible operation mode and the efficient power supply without perfect stable control. Micro the early stage of network development related to micro network operation concepts are modeled on the control of large power system. Our proposed approach is proven to be effective and feasible through the numerical simulation and theoretical analysis which will be meaningful.
基金National Research Foundation,Grant/Award Number:NRF-2020R1A3B2079803Korea Institute for Advancement of Technology,Grant/Award Number:P0026069。
文摘The polymeric gel electrolytes are attractive owing to their higher ionic conductivities than those of dry polymer electrolytes and lowered water activity for enlarged potential window.However,the ionic conductivity and mechanical strength of the Na-ion conducting polymeric gel electrolytes are limited by below 20 mS cm−1 and 2.2 MPa.Herein,we demonstrate Na-ion conducting and flexible polymeric hydrogel electrolytes of the chemically coupled poly(diallyldimethylammonium chloride)-dextrin-N,N′-methylene-bisacrylamide film immersed in NaClO_(4) solution(ex-DDA-Dex+NaClO_(4))for flexible sodium-ion hybrid capacitors(f-NIHC).In particular,the anion exchange reaction and synergistic interaction of ex-DDA-Dex with the optimum ClO_(4)−enable to greatly improve the ionic conductivity up to 27.63 mS cm−1 at 25◦C and electrochemical stability window up to 2.6 V,whereas the double networking structure leads to achieve both the mechanical strength(7.48 MPa)and softness of hydrogel electrolytes.Therefore,the f-NIHCs with the ex-DDA-Dex+NaClO_(4) achieved high specific and high-rate capacities of 192.04 F g^(−1)at 500 mA g^(−1)and 116.06 F g^(−1)at 10000 mA g^(−1),respectively,delivering a large energy density of 120.03Wh kg^(−1)at 906Wkg^(−1)and long cyclability of 70%over 500 cycles as well as demonstrating functional operation under mechanical stresses.
基金financially supported by the Distinguish Young Scholars of the National Natural Science Foundation of China(No.52225601)the National Natural Science Foundation of China(Grant No.52006214)。
文摘For the efficient use of solar and fuels and to improve the supply-demand matching performance in combined heat and power(CHP)systems,this paper proposes a hybrid solar/methanol energy system integrating solar/exhaust thermochemical and thermal energy storage.The proposed system includes parabolic trough solar collectors(PTSC),a thermochemical reactor,an internal combustion engine(ICE),and hybrid storage of thermal and chemical energy,which uses solar energy and methanol fuel as input and outputs power and heat.With methanol thermochemical decomposition reaction,mid-and-low temperature solar heat and exhaust heat are upgraded to chemical energy for efficient power generation.The thermal energy storage(TES)stores surplus thermal energy,acting as a backup source to produce heat without emitting CO_(2).Due to the energy storage,time-varying solar energy can be used steadily and efficiently;considerable supply-demand mismatches can be avoided,and the operational flexibility is improved.Under the design condition,the overall energy efficiency,exergy efficiency,and net solar-to-electric efficiency achieve 72.09%,37.65%,and 24.63%,respectively.The fuel saving rate(FSR)and the CO_(2) emission reduction(ER_(CO_(2)))achieve 32.97%and 25.33%,respectively.The research findings provide a promising approach for the efficient and flexible use of solar energy and fuels for combined heat and power.