期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Highly Sensitive Detection of Deoxyribonucleic Acid Hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors
1
作者 Xiang-Mi Zhan Mei-Lan Ha +7 位作者 Quan Wang Wei Li Hong-Ling Xiao Chun Feng Li-Juan Jiang Cui-Mei Wang Xiao-Liang Wang Zhan-Guo Wang 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第4期75-78,共4页
Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for... Gallium nitride- (GaN) based high electron mobility transistors (HEMTs) provide a good platform for biological detection. In this work, both Au-gated AlInN/GaN HEMT and AlGaN/GaN HEMT biosensors are fabricated for the detection of deoxyribonucleic acid (DNA) hybridization. The Au-gated AIInN/GaN HEMT biosensor exhibits higher sensitivity in comparison with the AlGaN/GaN HEMT biosensor. For the former, the drain-source current (VDS = 0.5 V) shows a clear decrease of 69μA upon the introduction of 1μmolL^-1 (μM) complimentary DNA to the probe DNA at the sensor area, while for the latter it is only 38 μA. This current reduction is a notable indication of the hybridization. The high sensitivity can be attributed to the thinner barrier of the AlInN/GaN heterostructure, which makes the two-dimensional electron gas channel more susceptible to a slight change of the surface charge. 展开更多
关键词 GAN In Highly Sensitive Detection of Deoxyribonucleic Acid hybridization Using Au-Gated AlInN/GaN High Electron Mobility Transistor-Based Sensors
下载PDF
Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator
2
作者 冯丽爽 王锴 +3 位作者 焦洪臣 王俊杰 刘丹妮 杨照华 《Optoelectronics Letters》 EI 2018年第1期17-20,共4页
A novel hybrid air-core photonic band-gap fiber(PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coeffici... A novel hybrid air-core photonic band-gap fiber(PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10^(-8)/℃, which is typically ~16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope(SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices. 展开更多
关键词 Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator PBF
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部